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Where the Camera Was 

KA T H E R I N E  Mel . B Y E R S 
J A M E S  M.  H E N L E 

Smith Co l lege 
Northampton, MA 01 063 

jhen le@math.smith.edu 

How many times have you seen something like this? 

Then 

Sources: Courtesy of The Bostonian 
Society/Old State House 

Now 

S imon Clay/Chrysa l is Images 

On the left is a picture of the Massachusetts Statehouse in Boston, taken about 1 860. 
On the right i s  a picture taken in 1999. They appear in Boston Then and Now [3] and 
are meant to show us how the building and its setting have changed, but the effect i s  
diminished because the camera was not in the same place for both photographs . How 
hard is it to determine the exact location of the photographer from information in a 
photograph? 

The problem of understanding the relative positions of image and object is actively 
studied by computer scientists . In Kanatani [2] , it is part of "computational projective 
geometry." The specific task of locating the camera from the photograph is called 
"camera calibration." In Kanatani 's  book the process is quite involved and technical.  
In a mathematical paper published later, Eggar [1] tackles the same problem. He proves 
that the task can be done, but the technique is similarly complex and the paper does 
not derive a practical method or formula. 

In this paper, we present a method and a formula for locating the position of the 
photographer. Our basic result is the following : 

PROPO S ITI ON. If a picture of a rectangular solid taken by a vertically-held pin
hole camera has measurements (on the photograph) of a, b, c, d, and e, 

B 
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then the camera was positioned 

de 
------- BC 
d (b- c) + e (b - a) 

to the left of B in the direction from C to B and 

ae 
------- AB 
d(b- c) + e (b - a) 

in front of point B, where BC and AB are on-site measurements. 

The proof is based on high- school plane geometry and the basic principles of pro
jective geometry taught in a beginning drawing class .  

Background 

Our assum ption i s  that the camera is  a pinhole camera with the film in a vertical plane 
(plane perpendicular to the ground) . U nder these circumstances , the image on the film 
is the sam e  as if we projected the three- dimensional world onto a plane, what we' ll 
call the " image plane," using straight lines to the viewer's eye.  

image plane 

------------_- -_-_-_-r_-_-_-_-_-_-

The only difference is that with a pinhole camera, the image appears on the film 
upside down. 

We' ll need a few elementary facts about thi s  projection: 

(A) The images of lines that are parallel to the ground and to one another, but not 
parallel to the image plane, meet at a single point in the image plane. 

image plane 

=:..=:::::;: �:- eye 
_..... . 

This point i s  called th e vanishing point of the collection of parallel lines. 
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Imagine a collection of planes, each passing through the eye and one of the parallel 
lines . Then the planes intersect in a line that meets the image plane at the vanishing 
point. 

All such vanishing points lie on a s ingle horizontal line called the horizon line. 

(B) Lines in the real world that are parallel to each other and also parallel to the 
image plane are parallel when projected onto the image plane. 

image plane 

-------

---
eye 

• 

From this  it follows that real horizontal lines are projected to horizontal lines . 

(C) Also, ratios along lines parallel to the image plane are preserved when pro
jected to the image plane. In the diagram below, this means that X I Y = xI y. 

image plane 

Finally, 

eye 
• 

(D) Lines on the ground connecting an object to the photographer appear as verti
cal lines on the image plane. 

Again, imagine a plane containing the eye of the photographer and the line to the 
photographer. 
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photographer 
:: = = = ·-�-1 

-:--•- _]l 

• 

That plane is vertical and intersects the image plane in a vertical line.  
A converse of (D) is  also true: lines in the ground plane whose images are vertical 

connect to the photographer. 

Our method 

Given the tools above, we present a simple method for determining the location of the 
photographer. 

We start with a photograph of John M. Greene H all at Smith College, taken around 
1935 by Edgar Scott. S ince the building is a complex solid, we pick a rectangular solid 
on it whose corners are easy to locate. 

Source: Histor ic Northampton, Northampton, Massachusetts 

We' l l  cal l this outline the schematic picture. 
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E 

a 

F 

b 
d 

A B 

2 5 5  

c 
e 

c 

The schematic corresponds to the aerial view below, where BC is the front of the 
building and P is the location of the photographer. 

A 
, ,B , . , . , . , . , . , . 

I ,' ', . . . . . . . . . . 

D 

'��� ""�J . , . , . , . , . , . , . , . , .. 
p 

c 

Our goal is to compute the distances IB and JB. We'll compute ffi- the computa
tion of JB can be done symmetrically. Our procedure is to express 

m 
BC 

in terms of the five measurements a, b, c, d, and e in the image plane. Assuming we 
can measure BC on site, w e  can then multiply this times the ratio to find m. 

To make the proof easier to view, we will show our work on a schematic with 
sharper angles :  

F 

B 

We begin by extending EF and AB in the schematic picture to determine the loca
tion of the left vanishing point, V. 
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Next, notice that PI in the aerial view i s  parallel to AB, hence by Fact (A), in the 
schematic picture it passes through V. Also, since it is a line to the photograp her, by 
Fact (D) it is vertical in the schematic picture. Thus point I is the intersection o f  this 
vertical with the extension of BC. 

--------
--

Vr:: I '•, I • 

I -��-
II-------, 

' 

F 

N ow we add a horizontal line through B parallel to the image plane and extend PI 
and DC to meet it. In the aerial view, it looks like: 

D 

K 
L 

p 

By Fact (B), this line is also horizontal in the schematic. The aerial view line CL is 
parallel to AB and PI, so it too passes through V. 

y;;::::::·_
-
_ I • • • I • • 

F 

I .A ----K�----:�:::::::=• B 
I!···· ' 

G 

c ----- ------

From L.KIB � L.LCB in the aerial view we have 

IB KB 

BC BL
. 

------------

From Fact (C), this proportion is equal to the ratio of image plane distances r / s. 

L 
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F 

v .::;:::: :::·.
·
. I ·· ... 

G 

.............. I .. A -----i-----�--------
KI 

-----·· 
·�-----·· B--------------------�-------------:::::::::::::::::::::::I•L 

' 

To find r j s ,  we add two more horizontal lines, CN and the horizon line VH, then 
focus on the lower half of the resulting figure . 

From 6 VLK ""' 6 VCN we have 

r + s  
b' 

r + e  
c I ' from which we can derive: 

r c'r 
s b'r + b'e - c'r 

From b. V JB ""' b. VHA we have 

r r - d 
b' a' 

from which we can derive: 
b'd 

r - --- b' - a'· 

These together give us 

r 
s 

c'd I b1d C b1-a1 
-�-��--� = �-�----� 
b' __!i.E_ + b' e - c' __!i.E_ b' d + b' e - ea' - c' d b'-a' b'-a' 

We promised to express thi s  ratio in terms of a ,  b, c, d, and e . We can accomplish that 
by one more application of similar triangles : We have 

a' 

a' x 
= 

b' x + d 
a 
b' and 

c' y c - = -- = - , 
b' y + e b 
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and so 

giving us 

IB 

BC 

r 

s 

a b c 
a' b' c' 

f,c'd de 
fb'd + fb'e - ef,a' - f,c'd d (b - c) + e (b - a) 

The corresponding formula for BJ / AB can be found symmetrically : 

BJ ae 
AB d(b - c) + e (b - a) 

This completes the proof of the proposition. • 
The last step in locating the position of the camera i s  finding its height. This i s  

accomplished in  a primitive way by  noting where the horiz on line cuts across the 
picture. The height of the camera is the height of this line as it appears against the 
building in the picture. 

. ... .... .. .. .......... 
----- ... --------------------�·;_";.·�·---

Source: Histor ic Northa mpton, Northa mpton, Massachusetts 

Con clus i o n  

The close agreement of  the two pictures illustrates the proposition. 

Then 

Source: Histor ic Northa m pton, 
Northam pton, Massachusetts 

Now 
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There are problems, though, in applying the proposition. It may b e  difficult to find 
an appropriate part of a building to analyze. It can be difficult to measure the building. 
It can be difficult to measure the photograph. Finally, locating the spot computed by 
the proposition, is not easy without equipment. 

Considering these problems, the close agreement of the pictures of John M. Greene 
Hall might be considered good luck. We used a high-resolution scan on the archive 
photograph- b was measured at 4 70 pixels .  Even so, if b were measured just one pixel 
less ,  the computed location of the photographer changes by almost two feet (because 
of the strategic location of b in the denominator of the formula) . 

REFERENCES 
1. M. H. Eggar, Pinhole cameras, perspective, and projective geometry, Amer. Math. Monthly 105:7 ( 1 998), 6 1 8-

630. 

2.  Kenichi Kanatani, Geometric Computation for Machine Vision, Clarendon Press, Oxford, 1993. 

3. Elizabeth McNulty, Boston Then and Now, Thunder Bay Press, 1 999. 

Proof Without Words: 
Extrema of the Function a cost+ b sin t 

y 
ax+by=O 

d::::; 1::::} la cos t + b sin ti/Ja 2 + b 2::::: 1 

-J a 2 + b 2 ::::; a cos t + b sin t ::::; J a 2 + b 2 

-M .  HAS SAN!, M .  BAYAT, AND H .  TEIMOORI 
INSTITUTE FOR ADVANCED STUDIES IN BASIC SCIENCES , 

P. 0. Box 45 1 95- 1 59 ,  
GAVA ZANG,  ZANJAN 45 1 95 ,  IRAN 

Hassani @iasbs .ac . ir 
B ayat@iasbs .ac . ir 

Teimoori @iasbs. ac. ir 



2 60 MATH EMATICS MAGAZI N E  

Tic-Tac-Toe on a Finite Plane 

M AU R E E N  T. C A R R OLL 
S T E V E N T. D OU G H E R T Y  

University of Scranton 
Scranton, PA 18510 
carrollm1 @uofs.edu 

doughertys1 @uofs.edu 

Everyone knows how to play tic-tac-toe. On an n x n board, if a player places n of 
her marks either horizontally, vertically, or diagonally before her opponent can do the 
same, then she wins the game. What if we keep the rules of the game the same but 
increase the number of ways to win? For simpl icity, any configuration of n marks 
that produces a win, regardless of whether or not it appears straight, will be called a 
winning line. For example, we will add the four winning l ines shown in F IGURE 1 
when playing on the 3 x 3 board. 

Figure 1 New wi n n i ng l i nes for 3 x 3 t ic-tac-toe 

This brings the total number of winning l ines on thi s  board to twelve. Why did we 
decide to add these particular lines? If you know the rudimentaries of finite geometry, 
you can see that the winning l ines are prescribed by the geometry of a finite affine 
plane. Otherwise, for now you should just notice that every new line contains exactly 
one mark in each row and each column. You should also notice that these new lines 
make it more difficult to identify a win here than in the standard game. As you will see, 
the reason for thi s  complexity is that l ines in an affine plane need not appear straight. 
With this new twist, the game that grew tiresome for us as children is transformed into 
an interesting, geometrical ly motivated game. 

The geometric intuition required to understand finite planes often proves elusive, as 
our Euclidean-trained minds have preconceived notions of l ines and points . The new 
version of tic-tac-toe helps to develop thi s  intuition. Moreover, this game relates geo
metric concepts to game-theoretic concepts as the natural question of winning strate
gies arises . Since more winning lines mean more possible ways to win, one might 
think that it would be easier to force a win in thi s  new game. Not only is the answer 
to this question nonintuitive, but the difficulty encountered in providing an answer for 
the 4 x 4 board is surprising. 

First, we review Latin squares and affine planes, as well as the relationship between 
them, in order to find the new winning lines.  Once you can identify the winning lines, 
you are ready to play tic-tac-toe on the affine plane. Since projective planes are a nat
ural extension of affine planes, you will also learn to play tic-tac-toe on these planes. 
You may recall that in the 3 x 3 version of tic-tac-toe we played as children, one 
quickly learns that there is no advantage to being the first player since the game be
tween two skilled players always ends in a draw. While this is the case on many finite 
planes, we will show that there are planes where the first player holds the advantage. 
In the event that you are the second player on a plane where a forced draw is possible, 
we provide a computational method that guarantees a draw. We will also show simple 
configurations of points that produce a draw with very few points. 
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Squares and planes 

Consider the 36 officer problem: There are 36 officers, each with one of six rank des
ignations and one of six regiment designations .  Can the 36 officers be arranged into 
six rows and six columns so that each rank and regiment is represented in each row 
and each column? Leonhard Euler showed this could be done for 9 and 25 officers (try 
it ! ) ,  but conjectured correctly that it could not be done for 36 officers. In an attempt to 
solve this problem he introduced Latin squares [10]. A Latin square of order n is an 
n x n matrix with entries from Zn = {0, 1 ,  2, ... , n- 1 } ,  where each number occurs 
exactly once in each row and each column. Examples of Latin squares of orders 2, 3 ,  
and 4 are given i n  FIGURE 2 .  

[ � � J u 1 n u 1 n 0 2 
2 0 

u 
I 2 3 ] 

u 
1 2 

n u 
1 2 

n 
0 3 2 3 0 2 1 
3 0 1 2 1 0 3 
2 1 0 0 3 3 0 

Figure 2 Lati n squares of orders 2 ,  3, and 4 

Since it is natural to explain the game of tic-tac-toe on a finite plane by the connection 
between planes and these squares, we begin with an explanation of Latin squares, 
affine planes, and the relationship between them. The material presented in this section 
can be found in any text on affine and projective planes [3, 17]. Readers familiar with 
these concepts may wish to proceed to the next section. 

Latin squares A = [aij] and B = [bij] are orthogonal if and only if C = [cij ], whose 
entries are the ordered pairs cij = (aij ,  bij) , contains all n2 possible ordered pairs of 
Zn x Zn. A collection of Latin squares is mutually orthogonal (MOLS) if and only if 
each pair is orthogonal. (The Maple command MOLS (p, m, n) produces n MOLS of 
order pm when p is prime and n < pm .) In the examples above, the two Latin squares 
of order 3 are orthogonal, and the three of order 4 are MOLS . Euler's 36 officer prob
lem asks if it is possible to find a pair of orthogonal Latin squares of order 6, one 
representing the ranks of the 36 officers and the other representing the regiments .  As 
illustrated by the first Latin square of order 3 in FIGURE 2, you can easily produce 
one Latin square of order 6 by continually shifting the elements of your first row to the 
right by one position and wrapping the leftover elements to the beginning. The proof 
of the 36 officer problem shows that you cannot produce a second Latin square orthog
onal to the first. (Try it ! )  Exhaustive solutions [19] to this problem, as well as more 
sophisticated ones [8, 18], can be found in the literature. (Laywine and Mullen [14] 

offer many interesting questions concerning Latin squares.) 
The Euclidean plane is an example of an affine plane, and the axioms of affine 

planes are merely a subset of those from Euclidean geometry. Specifically, an affine 
plane is a nonempty set of points, P ,  and a nonempty collection of subsets of P (called 
lines), L ,  that satisfy the following three axioms : 

( 1 )  through any two distinct points there exists a unique line ; 

(2) if p is a point, f is a line, and p is not on line f, then there exists a unique line, m ,  
that passes through p and i s  parallel to f, that is ,  p E m and f n m = 0; 

(3) there are at least two points on each line, and there are at least two lines. 
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When p i s  a point on line f, w e  say that p i s  incident with f. The Cartesian plane, with 
points and lines defined as usual, is the example we typically envision when reading 
this definition. It is an example of an infinite affine plane. 

Finite affine planes are those with a finite set of points. There is no finite affine 
plane where P contains exactly one, two, or three points. (Why not? What axiom(s) 
of affine planes would such situations violate?) The smallest finite affine plane can be 
given as P = {p , q , r, s} and L = {{p , q} ,  {p , r } ,  {p , s } ,  {q , r } , {q , s } ,  {r , s } } ,  which 
is represented by either of the graphs in FIGURE 3 .  Notice that an intersection of line 
segments does not necessarily indicate the existence of a point in P .  

Atgj 
p q p q 

Figure 3 Two graph ica l  representat ions of the affi ne p lane of order 2 

Using the given axioms, we invite the reader to reproduce the following elementary 
results : On a finite affine plane, each line must contain the same number of points 
and each point is incident with the same number of l ines. The number of points on 
each line is called the order of the plane. This is why the diagrams in FIGURE 3 
are described as the affine plane of order 2. In general , an affine plane of order n 
has n points on every line, and each point is incident with n + 1 lines. For any such 
plane, I P I  = n2 and ILl = n2 + n. Two lines are parallel if and only if they have 
no common points, and parallelism i s  an equivalence relation on the set of lines. 
A parallel class consi sts of a line and all the lines parallel to it. An affine plane 
of order n has n + I parallel classes , each containing n lines . As another example, 
F IGURE 4 shows the affine plane of order 3, where P = {a , b, c, d, e, f, g, h ,  i }  
and L = {{a ,  b ,  c } ,  {d , e, f } ,  {g , h ,  i } ,  {a , d ,  g } , {b , e ,  h } ,  {c , f, i } ,  {a , e ,  i } ,  {c , e ,  g } , 
{a , h ,  f } ,  {g , b ,  f}, {i , b ,  d } ,  {c , h ,  d } } . You can see that each line has three points , 
each point is incident with four lines, I P I  = 9, and I Ll = 12. The lines {c , e, g } , 
{a , h ,  f } ,  and {i , b, d } are parallel and, therefore, form one of the four parallel classes . 

Figure 4 Affi ne p l ane of order 3 

Although we have seen affine planes of orders 2 and 3 ,  for some orders there is no 
such plane. In fact, determining which orders of affine planes exist is exceptionally dif
ficult, and remains a largely open problem. It is well known that there are affine planes 
of order pk where p is prime and k E z+. (You can read about these in Mellinger' s 
article in this issue of the MAGAZINE.) This tells us, for example, that there are affine 
planes of orders 2, 3 ,  4, 5, 7, 8 , and 9. How about 6 and 10? We can answer one of 
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these using the following connection between affine planes and Latin squares: Bose [7] 
showed that an affine plane of order n exists if and only if there exist n - 1 MOLS of 
order n. Using this result, we see that there can be no affine plane of order 6 since 
the solution to the 36 officer problem shows that there is no pair of orthogonal Latin 
squares of order 6. The proof of the nonexistence of the plane of order 1 0  is much more 
difficult, requiring a great deal of mathematics and an enormous computation to finish 
the proof. (Lam [13] gives an historical account. )  It is not known whether an affine 
plane of order 1 2  exists . In fact, it is unknown whether there are any affine planes that 
do not have prime-power order. Planes of some composite orders, however, are known 
not to exist (see the Bruck-Ryser Theorem [3]) .  

This connection between affine planes of  order n and the n - 1 MOLS of order n 
can be used to find the lines of the plane quite easily. After arranging the n2 points of 
a finite affine plane in an n X: n grid, we will first identify its n + 1 parallel classes, 
which in tum reveals all of the lines .  The n horizontal lines form one parallel class,  
and the n vertical lines form another. Each of the remaining n - 1 parallel classes 
corresponds to one of the n - 1 MOLS as follows: the i th line in any parallel class 
is formed by the positions of symbol i in the corresponding Latin square. (Here, i = 
0, 1 ,  . . . , n - 1 .) For example, using FIGURE 4 and the two orthogonal 3 x 3 Latin 
squares in FIGURE 2, we see that the four parallel classes for the affine plane of order 3 
are 

(i) the horizontal lines {{a , b ,  c} , {d , e ,  f } ,  {g , h ,  i } } ,  
(ii) the vertical lines {{a , d ,  g } ,  {b , e ,  h } , {c , f, i } } ,  

(iii) the lines indicated by  the first Latin square {{c , e ,  g } ,  {a , h ,  f } ,  {i , b ,  d } } ,  and 

(iv) the lines indicated by the second Latin square {{g , b, f } ,  {c , h ,  d } ,  {a , e, i } } .  

At this point you might notice that the four lines that do not appear to be straight 
correspond precisely to the winning lines we added to the 3 x 3 tic-tac-toe board, as 
shown in FIGURE 1 .  

There is one other type of plane on which we will play tic-tac-toe, namely, a finite 
projective plane. A projective plane is easily constructed from an affine plane of or
der n by adding n + 1 points (the points at infinity) and one line (the line at infinity) . 
The points are added in this way: Each point at infinity must be incident with the n 
lines of a unique parallel class .  (Now you see that n + 1 points must be added since 
there are n + 1 parallel classes on the affine plane of order n .) The line at infinity, 
lex, simply consists of the n + 1 points at infinity. For example, the projective plane 
of order 2 can be constructed from the affine plane of order 2 given in FIGURE 3 by 
adding £00 = {a , b, c} ,  as shown in both of the graphs in FIGURE 5 .  Here we see point 
a is added to the parallel lines { r, p} and { s ,  q} ,  b is added to the parallel lines { r, s }  
and {p , q} , and c i s  added to the parallel lines { q, r }  and {p , s } .  

r 

r 

c p 

a 
Figure 5 Two graphical representations of the projective p l ane of order 2 
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O f  course, we could have discussed projective planes before affine planes. By defi
nition, a projective plane is a nonempty set of points, P ,  and a nonempty set of lines, 
L, that satisfy the following three axioms : ( 1 )  any two distinct lines meet in a unique 
point; (2) any two distinct points have a unique line through them; (3) there are at 
least three points on each line and there are at least two lines. We invite the reader 
to reproduce the following elementary results: On a finite projective plane, each line 
must contain the same number of points. In particular, a projective plane of order n has 
n + 1 points on each line. For any such plane, I P  I = I L I = n2 + n + 1 .  For example, in 
FIGURE 5 we can identify the seven lines of the plane of order 2 as {r, p ,  a } ,  {s , q , a } ,  
{r, s ,  b} , {p , q, b} , {q, r ,  c} , {p , s ,  c} , and {a , b ,  c} . Since the number of points i s  not a 
perfect square, you should notice that we will not be playing tic-tac-toe on an n x n 
grid for these planes. Lastly, just as we were able to construct a projective plane from 
an affine plane, we can do the opposite. Starting with a projective plane of order n ,  
removing any line and all of  the points with which i t  i s  incident forms an affine plane 
of order n .  

Throughout this work the word plane will refer to either an affine or projective 
plane. Affine planes of order n will be represented as JTn, and projective planes as fln. 
All statements about uniqueness are always understood to mean up to isomorphism. 

The game 

A zero-sum game is a game where one player's loss is a gain for the other player(s) . 
The standard game of tic-tac-toe is  a two-player, zero-sum game on a 3 x 3 board 
where players alternately mark one open cell with an X or an 0 .  For simplicity, we 
will refer to player X as Xeno, player 0 as Ophelia, and assume that Xeno always 
makes the first move. A player wins by being the first to place three matching marks 
on a line. If a game is complete and no player has won, the game is a draw. Tic-tac-toe 
is an example of a game of perfect information since each choice made by each player 
is known by the other player. Poker is not such a game since players do not reveal their 
cards. 

A strategy is  an algorithm that directs the next move for a player based on the cur
rent state of the board. A winning strategy for Xeno, for example, is a strategy that is 
guaranteed to produce a win for him. Although there i s  a best way to play standard 
tic-tac-toe, there is no winning strategy since each player can guarantee that the other 
cannot win. In this case, we say that both players have a drawing strategy, that is, an 
algorithm that leads to a draw. The assumption that both players are knowledgeable 
and play correctly is a standard game-theoretic assumption called the principle of ra
tionality, that is, at each move, each player will make a choice leading to a state with 
the greatest utility for that player. 

We give the following definition for tic-tac-toe on a plane of order n .  Xeno and 
Ophelia alternately place their marks on any point of the plane that has not already 
been labelled. The first player to claim all of the points on a line wins the game. The 
game is a draw if all points are claimed and neither player has completed a line. In 
order to show the order of play, we will denote Xeno's first move as X 1, his second 
move as X2 , and so on. Ophelia's moves are likewise designated. We shall refer to a 
game as an ordered pair [ (X 1 ,  • . .  , X.) , (01 , • . .  , 0,) ]  where r = s - 1 or r =  s .  A 
complete game is one that has resulted in a win or a draw. 

As suggested in the previous section, when playing on JTn we will arrange the n2 

points in an n x n grid. In this way, the cells of the standard n x n tic-tac-toe grid have 
become the points of rr n. When Xeno marks an open cell in the grid with his X ,  he is 
essentially claiming a point on the affine plane. The n2 + n lines of JTn are found in 
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this way: n lines are horizontal, n lines are vertical, and the remaining n2 - n lines are 
identified by consulting the n - 1 MOLS of order n .  Remember, each of the MOLS of 
order n defines n lines (displayed as identical symbols) . Since there are n - 1 MOLS, 
each defining n lines, we have our remaining n (n - 1) lines . For example, the game 
shown on the left in FIGURE 6 is a win for Xeno on the affine plane of order 3 since 
{X2 , X3 , X4 } forms a line, as can be verified by viewing FIGURE 4 or consulting the 
second Latin square of order 3 given in FIGURE 2 .  The game on the right is a win for 
Ophelia on the affine plane of order 4 since {01 , 03 , 06 , 07} forms a line, as can be 
verified by consulting the second Latin square of order 4 in FIGURE 2 .  

XI Xz 03 X3 
01 x6 X4 
X7 06 Oz Os 

04 Xs 07 
Figure 6 Wi n for Xeno on n3 and w in  for Ophel i a  on n4 

Of the many interesting graph-theoretic, game-theoretic, and combinatorial ques
tions this game generates, we will first consider two fundamental questions .  

Question 1:  For which planes are there winning strategies? 

Question 2: For which planes can play end in a draw? 

The first question is essentially a game-theoretic question, whereas the second ques
tion is fundamentally a geometric question. As regards the first question, in game the
ory it is known that in a finite two ·player game of perfect information, either one player 
has a winning strategy or both players can force a draw [16] . A "strategy-stealing" ar
gument [4, 5] proved by Hales and Jewett [11]  shows that in our case it is Xeno who 
has a winning strategy when such a strategy exists . To show this, assume that Ophelia 
has the winning strategy. Let Xeno make a random first move and thereafter follow 
the winning strategy of Ophelia. Specifically, Xeno plays as if he were Ophelia by 
pretending that his first move has not been made. If at any stage of the game he has 
already made the required move, then a random move can be made. Any necessary 
random moves, including the first, cannot harm him since he is merely claiming an
other point. This leads Xeno to a win, contradicting the assumption that Ophelia has 
the winning strategy. (Notice that this argument does not apply to Nim, for example, 
since a random move may cause the first player to lose.) Hence, in tic-tac-toe either 
Xeno has a winning strategy or both players have drawing strategies, in which case 
we say Ophelia can force a draw. If no draws exist, then Xeno is guaranteed to have 
a winning strategy. However, the existence of draws is not enough to guarantee that 
Ophelia can force a draw. We discuss the existence of winning strategies for all finite 
planes in the two sections that follow. 

Regarding the second question, a draw is possible when there exists a set T of 

rIp I /21 points such that every line in the plane has points in T and points not in T ,  
that is ,  no line has its points disjoint from T nor contained in T .  We will determine 
the planes in which play can end in a draw in the following two sections .  Of course, 
knowing that a draw exists does not explain how Ophelia can force the draw. To this 
end, we give a computational method guaranteed to produce a draw in the section on 
weight functions, and we describe simple configurations of draws in the last section of 
the paper. 



2 66 MATH EMATICS MAGAZI N E  

Planes of s mall order 

There is a unique affine plane of order 2; in it each line has two points, as represented in 
FIGURE 3 .  Xeno has a trivial winning strategy when playing tic-tac-toe on this plane. 
Namely, if X 1  and 01 are chosen arbitrarily, then X2 produces a win for Xeno with the 
line containing X 1  and X2 , regardless of its placement. Hence, Xeno wins merely by 
being the first player, and a draw is not possible since any two points form a line. 

There is a unique projective plane of order 2; as represented in FIGURE 5 ,  each 
line has three points . Xeno has a winning strategy when playing on this plane as well . 
Namely, if X 1 and 01 are chosen arbitrarily, then he chooses X2 to be any point not on 
the line containing X 1 and 01 . Since there is a l ine between any two points, 02 must be 
placed on the l ine containing X 1  and X2 (otherwise Xeno wins on his next move) . He 
chooses X3 to be the point on the line containing 01 and 02• Then Ophelia must block 
either the line containing XI and x3 or the line containing x2 and x3 (it is a simple 
matter to see that Ophelia does not already have these lines blocked). Xeno wins on 
his next move when he completes the l ine that 03 did not block. Even if the principle 
of rational ity is violated and Xeno purposely chooses a point unwisely, a draw is not 
possible on fh. Any four points on 02, no three of which are collinear, form an object 
called a hyperoval , and the complement of this  hyperoval is a line . Hence, there does 
not exi st a set T c P with IT I = 4 such that T and its complement intersect each line . 

There is a unique affine plane of order 3 .  As shown in FIGURE 4, each line has three 
points . The winning strategy for Xeno on thi s  plane is identical to the winning strategy 
on 02. (It is interesting to note that playing on thi s plane is the same as playing on 
a torus version of tic-tac-toe [20] .) If the principle of rationality is violated then the 
game could end in a win for Ophelia, but a draw is impossible since there are no draws 
on n3. To show thi s, assume that a draw is possible and let T be a set of five points 
that meets each l ine in L without containing any l ine completely. Let £1, £2 , and £3 be 
the three l ines of one of the paral lel classes of n3. Without loss of general ity, assume 

T meets both £1 and £3 at two points and £2 at one point. LetT meet £1 at points x and 
y, and £2 at point z. The l ine between x and z intersects £3 , say at p. The l ine between 
y and z also intersects £3, say at q. Notice that both of these lines go through z, and 
£3 is not paral lel to either of these lines. Therefore, we have p i= q since no two lines 
intersect in more than one point. Since T intersects £3 in two points, if p is not in T 
then q must be in T. So, ei ther l ine {x , z, p} or {y ,  z, q} is in T, which contradicts our 
assumption of the existence of a draw. 

The following theorem summarizes our di scussion of the analysis of play on the 
planes of smal l order. 

THEOREM. Xeno has a winning strategy on n2, n3, and 02, and no draw is possible 
on these planes. 

Weight funct ions  and pla nes of larger order 

When we venture beyond the planes of small order the complexity of the game in
creases dramatically. The additional points and l ines generate a far greater number of 
possible moves for each player. This prevents an easy move-by-move analysis as we 
did in the previous section. This is where Erdos comes to our rescue. The two theo
rems that follow are special cases of a result of Erdos and Selfridge [9] that specifies 
conditions under which the second player can force a draw in many positional games. 
Our proofs are a modification of the proof of the Erdos and Selfridge theorem given 
by Lu [15] . 
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To analyze the game on any plane of order n ,  we need a way to evaluate the state of 
the game at any point during play. It would be helpful to assign a number that in some 
way measures the utility of the state of the game for one of the players . To do this, we 
define functions that assign values to the state of the game when Ophelia is about to 
make her i th move. In order to choose the position for 0; from the unclaimed points 
remaining, she may first wish to consider which line has the best available point. Keep 
in mind that Ophelia forces a draw if she places one of her marks on every line, thereby 
blocking every possible winning line for Xeno. So, any line that Ophelia has already 
blocked can be removed from consideration. Of the unblocked lines remaining, it is 
most important for Ophelia to block lines with the largest number of Xeno's marks . If 
we define the value, or weight, of an unblocked line to be 2-u, where u is the number 
of available points on that line, then the lines of greater weight are precisely those with 
more of Xeno's marks, and are therefore urgent for Ophelia to block. As Ophelia is 
about to make her i th move, the weight of the game is defined as the sum of the weights 
of the unblocked lines. The weight of an available point is the sum of the weights of 
any unblocked lines incident with the point. Lastly, the weight of a pair of available 
points on an unblocked line is the weight of the line through these points . 

To give formulas to match these descriptions, we need some notation. Assume 
that the current state of play is [ (X I .  . . .  , X ; ) ,  (01 , . . .  , 0;_ 1 ) ]  and that L represents 
the set of lines .  Let L; be the collection of all lines not blocked by Ophelia at the 
i th move for Ophelia, with all of the points previously marked by Xeno deleted, 
that is, L; = {l - {X 1 ,  • . •  , Xd I .e  E L ,  .e n  { 01 ,  . . •  , O;_J} = 0} . So, L; contains 
lines or subsets of lines that have not been blocked by Ophelia. We will let L00 de
note the collection when no more moves can be made, that is, the game has ended 
in a win or a draw. We use oo rather than a particular number as the number of 
these collections depends on both the order of the plane and the progress of play. 
Let P; = P - {X 1 ,  . . .  , X ; , 01. . . .  , O;_J} , the set of points available to Ophelia at 
move 0; . 

With this notation, the weight of the game is 

w(L; )  = L 2-lsl. 
sEL; 

For p, q E P; , the weight of an available point q and the weight of an available pair 
{p, q }are 

w(q I L ; )  = L 2-lsl and w(p, q I L ; )  = 2-lsl, where {p, q }  s; s E L; . 
sEL;,qEs 

Let's compute examples of these various weights, using the game played on rr3 as 
shown on the left in FIGURE 6. Here, L 1  consists of eight lines of cardinality 3 and four 
partial lines of cardinality 2 (since X 1  has been removed) , giving w(L J ) = 4 · 2-2 + 
8 · 2-3. For L2 the state of the game is [ (X 1 ,  X 2) ,  ( 0 1 ) ] ,  and we eliminate the four lines 
through 01 from consideration. Thus, L2 consists of three lines of cardinality 3, four 
partial lines of cardinality 2, and one of cardinality 1 ,  giving w(L2) = 2-1 + 4 · 2-2 + 
3 · 2-3. Since there are four lines through any point on rr3 , we see that w(01 I L 1 )  = 
w(X2 I L 1 )  = 2-2 + 3 · 2-3. Also, w(X2 , 01 I L J ) = 2-3• Continuing this example, 
for L3 the state of the game is [ (X 1 ,  X 2 , X3 ) ,  (0 1 , 02) ] ,  and we eliminate the seven 
lines through 01 or 02 from consideration. We have w(L3) = 2 · 2-1 + 3 · 2-2 , 
w(02 I L2) = 2-1 + 2 · 2-3, w(X3 I L2) = 2 · 2-2 + 2-3, and w(X3 , 02 I L2) = 0. 

Consider the difference in weights between two successive states of the game, 
w(L; ) - w(L;+1 ) .  The only change between L; and Li+l is that Ophelia's i th move 
and Xeno 's (i + l ) st move have been made. So, the weights of any lines that do not 
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contain 0; and X;+ 1 do not change and will therefore cancel each other out. With 
only the lines through these two points remaining, the weights of the lines through 
X;+ 1 must be subtracted from the weights of the lines through 0; in order to find 
w (L; ) - w (L;+1 ) .  Since this eliminates the weight of the line that passes through both 
points, the weight of this line must be added back. Thus,  it can be seen that 

The examples given above can be used to demonstrate ( 1 ) when i = 1 and i = 2. 
These weight functions enable us to check if we have a draw at any stage of play. 

First notice that if 0 E L; , then w (L;) :::_ 2-o = 1 ,  Xeno has completed a line and thus, 
has won. On the other hand, if w (L;) < 1 then 0 rf. L; , and Xeno has not completed 
a line . Also, notice that if w (L00) < 1 then 0 rf. L00 and there is a draw. Moreover, 
these weight functions provide strategies for Xeno and Ophelia that will help us de
termine the outcome of play on all planes of higher order. Namely, Xeno should min
imize w (L;) - w (L;+ 1)  in an attempt to keep the weight of L j• at any stage j of the 
game, above 1 ,  whereas Ophelia should maximize this difference in order to drag the 
overall weight below 1 .  Hence, by equation ( 1  ), Ophelia chooses 0; by maximizing 
w (O; I L; ) ,  and Xeno chooses X;+ J by maximizing w (X;+ J I L; ) - w (X;+ �> 0; I L; ) .  
The power and uti lity of these weight functions i s  demonstrated in the proof of the 
fol lowing theorem, where the drawing strategy for Ophelia i s  specified for infinitely 
many projective planes. 

DRAW THEOREM FO R nn . Ophelia can force a draw on every projective plane of 
order n with n :::_ 3 .  

Proof To prove that Ophelia can force a draw, we must produce an algorithm that 
prescribes Ophelia's move at any point in the game, and then show that thi s strategy 
leads to a draw. As noted above, if w (L00) < I then Ophelia has forced a draw. This 
is equivalent to showing two conditions : 

(i) There existsN, where 1::: N < oo, such that w (LN) < I  and 

(ii) w (L;+ 1 )::: w (L; )  for all i :::_ N. 

Suppose that the current state of play is [ (X1 , . . .  , X ;) ,  (OJ. . . .  , 0;_1) ] ,  and Ophelia 
must make her i th move. Since the weight functions assign more weight to lines on 
which Xeno is closer to winning, Ophelia should choose a point of maximal weight. 
So, choose 0; E P; such that w (O; I L; ) = max{ w (q I L; ) : q E P; } .  By the choice 
of 0; and ( 1 ) , we see that the second condition is always satisfied since w (O; I L; ) :::_ 
w (X i+ 1 I L; ) .  

For a projective plane of order n, L 1 consi sts of n + I partial lines of cardinality n 
(once X 1 is removed) and (n2 + n + I )  - (n + 1 )  lines of cardinality n + 1 .  So, we 
have 

n+ 1 n2 2 2 2 
w (L) = "z-" + "z-<n+1) = 

n + n + 
. l � � 2"+ 1 

i=1 i=1 

We see that w (L1 )  < 1 when n :::_ 4. Thus, Ophelia forces a draw on the projective 
planes of order n :::_ 4 by choosing a point of maximum weight at every stage of the 
game. 

For the projective plane of order 3, recall that there are 13 lines with 4 points on each 
line, and 4 lines through each point. We calculate w (L3)  after providing the strategy 
for Ophelia's first two moves. Suppose X 1 and 01 are placed arbitrarily. Xeno places 
x2 anywhere. If 01 is already on the line containing x 1  and x2 , then 02 should not 
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be placed on this line . If 01 is not on the line containing X 1  and X2 , then 02 should 
be placed on this line . In either case, the configuration before move X3 is represented 
by FIGURE 7. 

X 0 X 
• • • 

• 
0 

Figure 7 Configu rat ion of [(X1, X2), (01, 02)] on TI3 

Xeno can place X3 anywhere, leaving only four possible configurations of points, as 
represented in FIGURE 8 .  As long as w (L3) < 1 in each case, then Ophelia has forced 
a draw. 

X1 01 X2 X1 01 Xz X1 01 Xz X3 X1 01 X2 

� 
• • • • • • • 

r • • • 
02 02 x3 02 02 

case (a) case (b) case (c) case (d) 

Figure 8 Poss ib l e  configu rations for [(X1, X2, X3), (01, 02)] on TI3 

To calculate w (L3) ,  in all four cases we start by eliminating the four lines containing 
01 and the remaining three lines containing 02. Once these seven lines are eliminated 
from consideration, there are only six lines remaining to be included in the weight 
function. 

Case (a) : There are two partial lines through X 1  of cardinality 3. There is one par
tial line of cardinality 3 through X2 , and one partial line through X2 and X3 of cardi
nality 2. Through X3 there is one remaining line of cardinality 3 .  Since only 1 2  out of 
1 3  lines have been considered, there is one line of cardinality 4 remaining. This gives 
w (L3) = 2-2 + 4 · 2-3 + 2-4 = 1 3 / 1 6 . 

Case (b) : There is one partia1 1ine through X 1  of cardinality 3, and one partial line 
through X 1 and X3 of cardinality 2. The same holds for X2 . All lines through X3 have 
been considered. Since only 1 1  of the 1 3  lines have been considered, there are two lines 
of cardinality 4 remaining. This gives w (L3) = 2 · 2-2 + 2 · 2-3 + 2 · 2-4 = 14/ 16 .  

Case (c) : Using similar reasoning, we  can show w (L3) = 6 · 2-3 = 6/8 .  

Case (d) : Likewise, we have w (L3) = 2 . 2-2 + 3 . 2-3 + 2-4 = 1 5 / 1 6 .  

In all possible cases w e  have w (L3) < 1 .  Thus, Ophelia can force a draw on 03 . 
• 

Draws o n  aff i ne  pla nes 

Using the same technique, we can give the drawing strategy for Ophelia on infinitely 
many affine planes.  For an affine plane of order n, L1 consists of n + 1 partial lines of 
cardinality n- 1 (once X1 is removed) and (n2 + n) - (n + 1) lines of cardinality n. 
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n+l nz-1 n2 + 2n + 1 
w(LJ) = L z-<n-1) + L z-n = n 0 

i=l i=l 2 

We see that w(L1) < 1 when n ::::: 6. Following the same argument as given in the 
previous proof, we see that Ophelia can force a draw on the affine planes of order n ::::: 7 
(since there is no such plane of order 6). 

The only affine planes remaining are Jr4 and Jr5. It is interesting to note that we 
found greater difficulty determining the outcome of play on n3 , Jr4 , and Jrs than on 
planes of higher order. While we were able to determine the outcome of play on n3 by 
performing calculations for all possible outcomes by hand, the unsuspected complexity 
of play on Jr4 and Jr5 lent itself to analysis by computer. 

Ophelia's drawing strategy for Jr5 is the same as that given for n3 . The initial con
figurations are identical to the cases shown in FIGURE 8 , and the weight functions 
for each case can be calculated as demonstrated in the previous proof. However, in Jr5 
some of these cases produced too many subcases to be calculated by hand, and a com
puter was used to verify that w(Li) was eventually less than I .  The following theorem 
summarizes these results . 

DRAW THEO REM FO R Jl'n. Ophelia can force a draw on every affine plane of or
der n with n ::::: 5. 

There i s  only one plane left to consider. What happens on the affine plane of order 4? 
The following game shows that draws exist on Jr4 . 

X 0 X X 

0 X 0 0 
X 0 X X 

0 X 0 0 

Since we had no examples of a plane for which a winning strategy and draws coex
isted, it was natural to expect that Ophelia could force a draw. To our surprise, three 
independent computer algorithms show that Xeno has a winning strategy on this plane. 
The first two programs, written by students J. Yazinski and A. Insogna (University of 
Scranton), use a tree searching algorithm. The third program, written by I. Wanless 
(Oxford University), checks al l possible games up to i somorphism. Thus, the affine 
plane of order 4 is the only plane for which Xeno has a winning strategy, and yet, 
draws exist. Finally, we have answered the two questions that we posed after initially 
introducing the game. 

Answer 1: Xeno has a winning strategy on Jr2 , n2 , Jr3 and Jr4 . 
Answer 2: Draws exist on Jl'n where n ::::: 4, and on nn where n ::::: 3 .  

Blocki ng conf igurat ions  

Suppose you are playing as  Ophelia on  one of  the infinitely many planes for which 
there is a drawing strategy. The algorithm given in the previous section may guarantee 
a draw, but it requires computations of Eulerian proportion in order to pick a point of 
maximum weight at each move. Since any opponent would surely cry foul were you 
to consult a computer, it could take hours to finish a game using this algorithm! The 
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geometry of these planes suggests a more practical solution. We will relate Ophelia' s 
strategy to this geometry in order to demonstrate some configurations (which Ophelia 
would like to construct) that can produce a draw with very few points. The desired 
set of points is called a blocking set, since every line intersects the set, but no line is 
contained in the set. More information on similar configurations can be found in recent 
survey articles [6, 12] and the references therein. 

First, let us consider the projective plane of order 3 .  Since it is easier to understand 
03 by describing P and L rather than giving its graph, take the elements of the fol
lowing array on the left as the point set of this plane, and the right array as a possible 
game. 

X 
0 
X 

X 
X 
X 
0 
0 

X 
0 
X 

We have simply taken the standard form of Jr3 and added 1 ,  5 ,  9, and 1 3  as the points 
at infinity. The lines are given by 

{2 ,  3, 4, 1 3 } , {6, 7, 8 , 1 3 } , { 10 ,  1 1 ,  12 ,  1 3 } , {2,  6, 10, 1 } , {3 ,  7, 1 1 ,  1 } , 

{4,  8 , 12 ,  1 } , {2,  7, 12 ,  9 } , {3 ,  8 , 10 ,  9} , {4,  6, 1 1 ,  9} , {4, 7, 10 ,  5 } , 

{3 ,  6, 12 ,  5 } , {2,  8 , 1 1 ,  5 } , and { 1 ,  5 ,  9, 1 3 } . 

It is easily checked that the game shown on the right above is a draw. The set of points 
marked with X, { 1 ,  2 ,  3, 4, 7, 10 ,  1 2} , and those marked with an 0, {5 ,  6,  8 , 9 , 1 1 ,  1 3 } , 
are both blocking sets . Further inspection shows that these sets have a specific config
uration in common. We will focus on Ophelia' s blocking set. The line .e = { 1 ,  5, 9 , 1 3 } 
has all but one point labelled with an 0. Through at least one of the points on .e marked 
with an 0, say 5, there is a line m = {2,  5 ,  8 , 1 1 } that also has all but one point marked 
with an 0. We also see that lines .e and m contain five of the six points that compose 
Ophelia' s blocking set. The sixth point lies on the line through points 1 and 2, the 
two points marked with an X on lines .e and m .  We can find the same configuration in 
Xeno's blocking set by taking .e' = {2,  3, 4, 1 3 } and m' = {2 ,  7, 12 ,  9 } , which makes 
5 the sixth point since it lies on the line through points 9 and 1 3 .  Of course, 10 is an 
extraneous point of the set for Xeno, included for the sake of presenting a complete 
game. 

Figure 9 Configu ration of a d raw on TI3 

Interestingly, every draw on 03 displays such a configuration, as depicted in FIG
URE 9 .  To show this, assume Ophelia has a produced a draw on 03 with the points in 
the set A = { 01 , . . .  , 06 } . If no three points of A are on a line, then through 01 there 
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i s  a line containing each Oi , 2 :::; i :::; 6 ,  and these five lines are distinct. However, this 
is impossible since there cannot be five lines through 01 on 03 . (Note also that no 
four points of A are on a line because then A would contain a line .) Hence, some three 
points of A are on a line . Without loss of generality, assume that we now have line .e as 
shown in FIGURE 9 .  X 1 has three lines through it other than .e .  Each of these lines must 
have a point claimed by Ophelia since the set A has a point on every line . Hence, each 
of the remaining three points of A must be incident with exactly one of these lines, 
and a simple check shows that we have the configuration given above. This blocking 
configuration is not unique to 03 . It can be generalized to projective planes of higher 
order as shown by the following theorem. 

B LOCKING SETS ON On THEOREM . On any projective plane of order n with 
n ;::: 3, there exists a blocking set of2n points. 

Proof. This purely geometric result is shown within the game structure by con
structing the blocking set. Let .e be a line in a projective plane of order n ;::: 3, with 
points q1 , • • •  , qn+l · Suppose Ophelia has accumulated Oi = qi for i = 1 ,  . . .  , n .  On 
nn , each of these points is incident with n + 1 lines . Hence n2 + 1 lines now have an 
0 on them. 

Assume Xeno claims qn+ J . otherwise Ophelia wins. There are n lines through qn+l 
other than .e .  Label these lines .e 1. . . .  , .en , as in F IGuRE 1 0. Choose a line m i= .e 
through q1 and let On+i be the intersection of m and .ei for i = 1 ,  . . .  , n - 1 .  Let 02n be 
any point on .en other than the intersection of m and .en , otherwise Ophelia wins.  Since 
n > 2, we are guaranteed that such a point exists. Final ly, we have { 01 , 02 , . . • , 02n } 
as the required set of 2n points since each of the n2 + n + 1 lines are incident with a 
point in this set, and no l ine i s  contained in thi s set. • 

Figure 1 0  Configu rat ion of b locki ng set on Ti n  

The blocking set constructed in  the proof translates to  a drawing strategy for Ophe
lia that is free from computation. On a projective plane, Ophelia may attempt to acquire 
points that display such a configuration. At first consideration, the reader might find 
this strategy counterintuitive. If Ophelia's goal is to block every line, then how could it 
make sense to continue to place her marks on lines that are already blocked ( .e and m)? 
The answer lies in the geometry of these planes .  Since each point is incident with n + 1 
lines, 01 blocks n + 1 lines .  Since there exists a line between 01 and any other point, 
02 will block n lines regardless of its placement. 03 will block n lines if it is placed on 
.e ,  but only n - 1 lines if not placed on .e .  By continuing to place her marks on .e, Ophe-
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lia is maximizing the number of lines blocked by each 0; . The points q1 ,  q2 , . . .  , qn 
claimed by Ophelia, as shown in FIGURE 1 0, block n2 + 1 of the n2 + n + 1 lines on 
On . This is the largest number of lines she can block with n points . 

The blocking set on an affine plane of order greater than 4 displays a similar con
figuration, consisting of 2n - 1 points . To show this ,  let l 1 , • • •  , ln be the lines of a 
parallel class and suppose l 1  = {q1 , q2 , . . .  , qn } ,  as in FIGURE 1 1 . Let 0; = q; for 
1 ,  . . .  , n - 1 ,  and assume Xeno claims qn . Let l 1 ,  m 1 ,  • • •  , mn be the lines through qn , 
and let On- I+j be the point of intersection of m j and .e j+I for j = 1 ,  . . .  , n - 1 .  Let 
02n-I be any point on mn that is not collinear with On , . . .  , 02n-2 · This can be done 
because n > 4, that is , there are more than four points on a line . 

q] 
e 1 .-------��-------------------------. 

02n-2 
Figure 1 1  Configu rat ion of b locki ng set on rrn 

02n- l 

Notice that On , On+I •  . . . , 02n- I do not lie on a line since this line would have to 
interesect .e 1 , which it does not. However it may be possible that n - 1 of them lie on 
a line with 0; for i ::: n - 1 .  This can be avoided by simply changing the order of 
lines {m; } ,  which is possible when n > 4. Thus, we have { 01 , 02 , • . .  , 02n-d as the 
required set of 2n - 1 points. This work establishes the following result. 

B LOC KING S ETS ON 7rn THEOREM . On any affine plane of order n with n ::: 5, 
there exists a blocking set of2n - 1 points. 

As we can see from these proofs, if Ophelia can place 2n or 2n - 1 marks (depend
ing on the type of plane) in the required manner then the game will be a draw. While 
this offers the second player an easy algorithm to follow, it is not a drawing strategy 
since it is not guaranteed to produce a draw. If Xeno' s best move happens to be a point 
on the line which was to be part of Ophelia' s blocking configuration, then she must 
begin acquiring points on a different line. 

Com petitive play 

At the University of Scranton we hold an annual single-elimination "Tic-tac-toe on 
n4" tournament where students compete for the top spot (and prizes ! ) .  It is not un
common to see the serious competitors practicing for weeks before the contest. We 
encourage the reader to play too, as we have found that these students gain not only 
an understanding of affine planes, but also develop an intuition for finite geometries 
that reveals properties and symmetries not easily seen by reading definitions in a ge
ometry text. For practice on n4, try playing against a computer at the author's  website : 
academi c . uof s . edu/f aculty/ carrollm 1 / t i ctactoe/t i ctact oea4 . html . 
We also welcome a proof of the existence of a winning strategy for Xeno on 1r4 that 
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does not rely o n  a computer. For further reading, surveys of other tic-tac-toe games 
can be found in Beck [2] and Berlekamp, Conway, and Guy [4] . 

Acknowledgments. We thank Jonathan Yazinski, AI Insogna, and Ian Wanless for their enthusiasm in determin

ing the outcome of play on 11'4 . 
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Cover i m age : Where did you say that  camera was?, by Don MacCubb i n  

Jim Henle 's  article in this issue tells us how to compute the location from which 
a given photograph was taken. This is a potentially confusing problem, but the 
mathematician shown on the cover will solve it quickly after reading Henle's  
article .  

Don MacCubbin is an artist, a photographer, and the Mechanical Engineering 
Lab Manager at Santa Clara University, where he just received his bachelors ' 
degree in Studio Art. When he isn ' t  busy with undergrads in the lab, Don ponders 
triangulation as it applies to errant golf balls and missed pool shots . 
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Designs, Geometry, and a Golfer's Dilemma 

KE I T H  E .  M E L L I N G E R  
Mary Washington Co l lege 
Fredericksburg, VA 2240 1  

kme l ling @mwc.edu 

I was taken off guard the other day when my father-in-law, John, posed to me a very 
simply stated problem. He plays golf. In fact, John plays a lot of golf. When you play 
as much golf as he does, you become bored playing with the same people over and 
over again. So here' s  the problem: John regularly plays with a group of 1 6  people. 
Three days a week for the entire summer, they go out in 4 groups of 4 players each 
to hit the course. Is there some way they can arrange the players in the groups each 
day so that everybody plays with everybody else in some sort of regular way? As my 
father-in-law said, "We want to mix it up as much as possible." 

First of all, we need to figure out what the question is asking. Let's look at the 
problem from the perspective of my father-in-law. Suppose that John plays his first 
day with three other players, say Keith, Bill, and Howard. Then, there are still 1 2  other 
people available to play. John would prefer to play with all 1 2  other people before he 
ends up playing with Keith, Bill, or Howard again. From John's perspective, this seems 
like it may not be a difficult problem. Simply assign three players to John for the first 
day, three different players to John for the second day, etc. Then, after 5 days, John will 
have played with all of the other 15 people in the group. However, remember that we 
need to assign 4 groups (not just John's group) of 4 players each, and we want every 
golfer to play with every other golfer, again in some sort of regular way. Suddenly 
the problem seems much more difficult. In the next several pages, we will find some 
solutions to the problem. In our quest to find a best solution we will take a ride through 
some areas of discrete mathematics including finite affine and projective planes ,  and 
combinatorial designs . 

A con n ection  to affi n e  planes 

One basic solution to the golfer's  dilemma comes from a rather unexpected area of 
mathematics ,  geometry. How could this be relevant? Bear with me for a few paragraphs 
and we' ll get back to golfing soon enough. We need some terminology. The formal 
definition of an affine plane goes like this .  

DEFINITION. An affine plane is a set of  points together with a collection of subsets 
of these points , called lines, such that 

1 .  every two distinct points determine a unique line, 

2 .  if l is a line and P is a point not on l, then there exists a unique line m such that P 
is on m and l and m have no points in common, and 

3 .  there exist 3 noncollinear points. 

(You can read about playing tic-tac-toe on affine planes in Carroll and Dougherty ' s  
article in  this issue of the MAGAZINE.) One important point, which is made clear by 
the second axiom, is that affine planes have parallel lines. This may not seem like a 
big deal, but in the world of higher mathematics, people do without parallel lines all 
the time. In fact, we will soon see another kind of plane where parallel lines do not 
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exist. Now we add an additional condition. Suppose that we have an affine plane A 
that contains only a finite number of points. Is this possible? Indeed it is. 

Consider a 2-dimensional vector space V over some field F. We define points to be 
all of the vectors of V and define lines to be all of the cosets of all of the ! -dimensional 
subspaces contained in V .  For example, take V to be the vector space �2 whose vectors 
are all ordered pairs (x ,  y) for x ,  y E R The cosets of the ! -dimensional subspaces are 
sets of the form { u + tv : t E �} for some u, v in V .  These co sets of V are exactly what 
we typically call the lines of the coordinate plane. Hence, a 2-dimensional vector space 
can be used to model an affine plane. 

Now, we again consider V as a 2-dimensional vector space, but this time restrict 
the coordinates of the vectors of V to be in the finite field GF(q) that contains q 
elements. The notation GF(q) means the Galois field with q elements, named after the 
French mathematician Evariste Galois ( 1 8 1 1-1 832). For those unfamiliar with finite 
fields, simply think of the coordinates x and y as coming from a finite set that only 
contains q elements. One can prove that the number of elements in a finite field is 
always a power of some prime number. Hence, we refer to q as being a prime power. 
Again, considering all of the vectors of V as points and all of the cosets of all of the 
! -dimensional subspaces as lines, we obtain an affine plane. This time, however, our 
affine plane contains only a finite number of points, namely, the number of vectors 
of V .  S ince each vector is written as an ordered pair of elements from GF(q ) ,  we see 
that V contains q2 vectors . By varying t in the definition of cosets given above, we 
see that the number of points on a line is equal to the number of elements in the finite 
field. Hence, every line contains exactly q points . 

We can do some more involved counting to find other properties of our affine plane. 
For instance, fix a vector v E V and count how many cosets of ! -dimensional sub
spaces pass through v. To do this ,  we note that there are q2 - 1 choices for a second 
vector w different from v. The vectors v and w together determine a coset of a ! 
dimensional vector subspace, say C .  But this  coset C could b e  determined from v 
and any other vector in C .  S ince there are q - 1 choices for another vector in C, 
each such coset has been counted q - 1 times. Therefore, the total number of cosets 
of ! -dimensional subspaces through the given vector v is exactly (q2 - 1 ) / (q - 1) = 
q + 1 .  Hence, every point lies on exactly q + 1 lines. 

Finally, the number of lines can be counted by counting the number of ways to 
choose two distinct points to generate a line, and then dividing by the number of ways 
any given line was counted. The number of ways to choose an ordered pair of two 
distinct vectors is q2 (q2 - 1 ) .  But each line is generated by choosing any such pair of 
points on that line, which can be done in q (q - 1) ways. Hence, the total number of 
lines is exactly (q2 (q2 - l ) ) j (q (q - I ) )  = q2 + q .  The affine plane obtained from this 
model of a 2-dimensional vector space over the finite field GF(q) is denoted AG(2, q )  
(the classical affine geometry of  dimension 2 and order q) .  

We can say a little more. Note that two co sets of  the same ! -dimensional subspace 
of a vector space never intersect. Hence, we have collections of lines in our affine plane 
no two of which meet. Such sets of lines are naturally called parallel classes of lines. 
Counting can again be used to show that each parallel class contains exactly q lines . 
Since there are a total of q (q + 1 )  lines, there must be q + 1 different parallel classes. 

Let's get back to the original problem of the golfer's  dilemma. We have a total of 
16 golfers that we want to break into various groups of 4. Now, let q = 4 in the affine 
plane model above. The affine plane AG(2, 4) contains exactly 1 6  points , and every 
line contains exactly 4 points. Every parallel class contains exactly 4 lines, and there 
are exactly 5 parallel classes . Hence, we have a solution to the golfer's  dilemma by 
letting the points of AG(2, 4) represent the golfers, and the lines represent the various 
groups of 4 golfers playing together. The parallel classes of lines represent the various 
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days of play since each parallel class consists of 4 distinct groups of 4 players each 
(that is, 4 parallel lines in each parallel class) .  

When the finite field is relatively small, one can try to find the lines of AG(2, q) by 
hand. A software package such as Magma [3] does this computation virtually instan
taneously, but since q = 4 is pretty small, let 's get started doing it by hand. Keep in 
mind that since this is a .finite affine plane, lines can be thought of simply as subsets of 
points with little relation to shapes .  First we write the 1 6  players in a 4 x 4 grid as in 
FIGURE 1 .  

1 2 3 4 

5 6 7 8 

9 10  1 1  1 2  

1 3  1 4  1 5  1 6  

Figure 1 Represent ing AG(2 , 4) 

The rows and columns of the grid can each represent a parallel class .  This means 
that any further lines must contain exactly one point from each row, and one point from 
each column (since two points in the same row or column would uniquely determine 
one of the lines already given) . At this point we might try using the diagonals to get two 
more lines . The reader is encouraged to try to find the remaining lines by hand before 
proceeding, the lesson being that this is not at all easy. The use of finite geometry 
(along with a little computer power to generate the cosets of the appropriate vector 
subspace) gives us the blocks in TABLE 1 .  

TAB LE 1 :  A five-day sched u l e  for 1 6  golfers .  

Day 1 Day 2 Day 3 Day 4 Day 5 
(rows) (columns) (diagonals) 

{ 1 ,  2 ,  3, 4} { 1 ,  5 ,  9, 1 3} { 1 ,  6, 1 1 ,  16 }  { 1 ,  7 ,  12 ,  14} { 1 ,  8 ,  10 ,  15 } 
{5 , 6 ,  7 , 8} {2 ,  6 ,  10 ,  14} {2, 5 ,  12 ,  1 5 } {2 ,  8, 1 1 ,  1 3} {2 ,  7 , 9 ,  1 6} 

{9 ,  10 ,  1 1 ,  12} { 3 ,  7 ,  1 1 ,  1 5 } { 3 ,  8, 9, 14} {3,  5,  10 ,  1 6} { 3 ,  6, 1 2 ,  1 3 } 
{ 1 3 ,  14 ,  1 5 ,  1 6} {4, 8, 12 ,  1 6} {4, 7 ,  10 ,  1 3 } {4, 6 , 9 ,  1 5 } {4, 5 ,  1 1 '  14} 

We have solved the problem of the golfer' s  dilemma: Assign each golfer a number 
between 1 and 16 .  Then, over the course of 5 days, the golfers play together based on 
the schedule outlined in TABLE 1 .  At the end of 5 days, every golfer will have played 
with every other golfer exactly once. 

The golfers aren 't h appy 

Having found a solution to the problem, I was quick to email a solution to my father
in-law, but was rather disappointed at his immediate response. First of all , we have 
only covered 5 days of play. These guys want to play all summer. So what do we do? 
A natural remedy is to simply repeat the process .  That is ,  after 5 days, just start over 
with day 1 .  That way, after, say, 25 days of play, every golfer will have played with 
every other golfer exactly 5 times.  However, there is a clear disadvantage to repeating 
our solution. 

Let's go back to the beginning. Suppose that John plays his first day with Keith, Bill, 
and Howard. Then, 5 days later, the golfers all decide to repeat the schedule. When 
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John plays with Keith for the second time, the other two members o f  their group will 
again be Bill and Howard. It would be nice if John and Keith could play together with 
two different people the next time around. More precisely, we see that two distinct 
golfers uniquely determine a group. That is, if I pick any two golfers, say John and 
Keith, from the group of 16 ,  there is exactly one group of 4 in which John and Keith 
are both members. In our example, it is the group that contains Bill and Howard. From 
the perspective of the affine plane, this really comes as no surprise. Recall that two 
points of the affine plane determine exactly one line. 

So let 's kick it up a notch. Here's  one quick and easy way to remedy the situation. 
Assign each golfer a number between I and 16 ,  and play through the five day schedule 
as outlined in TABLE I . After the five days are up, permute the numbers in some way, 
and then repeat the schedule. The golfers could all pick a partner to switch numbers 
with, or they could cyclically shift their numbers (i ---+ i + 1 for i between I and 15 ,  
and 16 ---+ 1 ) .  Of  course, one must be  careful with such a cyclic shift. The reader should 
check that after certain cyclic shifts, the groups will start to repeat. Is there some more 
systematic way to ensure that every golfer plays with every other golfer, but eliminate 
the drawbacks of the solution already given? 

Statisticians face these sorts of questions all the time when they are designing ex
periments. They have a set of v objects on which they want to run an experiment, 
but the experiment can only be run on k objects at a time. In our case, v = 16 and 
k = 4, and maybe our experiment consists of determining the ability of each golfer. 
The stati sticians want to mix things up as much as possible. Maybe object 2 could 
affect the outcome of the experiment on object I ;  maybe Bill makes John nervous .  
So, in order to get an accurate reading on John 's golf ability, we need to make sure 
that Bi l l  doesn ' t  play with John every s ingle time. In a similar fashion, suppose Bill 
alone doesn ' t make John nervous, but when B il l  and Howard get together, they goof 
around a lot and it makes John nervous .  So, it would be OK to put these three together 
once, but if John and Bill are together again, it would be best if Howard i sn' t included 
the second time around. More generally, we would like every set of three golfers to be 
grouped together exactly once. Can this  be done? 

First we note that if every two golfers are together exactly once, then the sched
ule would run in 5 days (as discussed above). This  makes sense simply by counting. 
That is, if John plays with 3 different people each day, it would take 5 days for him 
to play with all of the remaining 1 5  players . Can we apply the same reasoning to the 
new problem? That is, suppose every group of 3 golfers play together exactly once. 
How long will the schedule last? From John 's perspective, the answer is equal to the 
number of groups in which John is a member. But remember, three golfers deter
mine a group now. The number of ways to choose 2 golfers from the remaining 15  
i s  C2') = 1 05 .  Once two other golfers are chosen, John and the two others uniquely 
determine the group, say, John, Keith, Bill , and Howard. But whether we pick Keith 
and Bil l ,  Keith and Howard, or Howard and Bill as the additional two golfers, we will 
always get the same group. Hence, each such group is counted 3 times .  Therefore, the 
number of groups in which John is a member is 105/3 = 35 .  So the schedule would 
last for 35 days, or about 1 2  weeks i f  they play 3 days per week. This would cover 
most of the summer and probably keep the golfers (in particular, my father-in-law) 
happy. 

Comb i n ator i al des i g n s  

Mathematicians refer to the solution o f  a problem similar to the one above a s  a combi
natorial design, or simply a design. 
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DEFINITION .  A design is a set of v points together with a set of subsets of size k of 
these points, called blocks, with the property that any t points lie in exactly A. blocks . 
Such a design with these parameters is called a t  - (v ,  k ,  A.) design. 

That's a lot of variables . Let's look at an example. In our first solution to the prob
lem, we had 16 golfers playing in groups of 4 such that every pair of golfers played 
together exactly once. Hence, the number of golfers = v = 16 ,  the size of the groups 
(or blocks) = k = 4, and every t = 2 golfers play together exactly A. =  1 times. The 
affine plane model provided us with a 2 - ( 16 ,  4, 1) design that solved the problem. 

Based on our discussion in the last section, we now desire a 3 - ( 16 ,  4 ,  1) design. 
That is, we want every three golfers to play together exactly once. Further, we would 
like to assign 4 pairwise disjoint groups to each day for 35 days. So, not only do we 
need to build a 3 - ( 16 ,  4, 1) design, but we need to be able to divide the blocks of 
the design into 35 sets of 4 pairwise disjoint blocks each (a design with this property 
is called resolvable). It sounds like a big task, but it turns out that the design we seek 
was actually discovered many decades ago. One excellent source for such information 
is the CRC Handbook of Combinatorial Designs [4] . It is here that you can find all 
known values of t ,  v ,  k, and A. for which a design exists . The existence of the design 
we seek is due to Hanani [5] . However, the construction of this design relies on first 
finding a 3 - (8 , 4 ,  1) design (that is, finding an equivalent golf schedule for only 8 
golfers rather than 16) .  Oddly enough, the construction of this smaller design also has 
a connection to geometry. 

Proj ect ive planes 

There is a close connection between affine planes and the so-called projective planes . 
Projective planes correspond to the notion of perspective. That is, from the perspective 
of a man standing on railroad track, the tracks seems to meet out at the horizon. Hence, 
parallel lines do not seem to exist. This can be laid out mathematically as follows .  

DEFINITION . A projective plane is a set of  points, together with a set of  subsets 
of these points , called lines, such that 

1 .  every two distinct points determine a unique line, 

2. every two distinct lines meet in a unique point, and 

3. there exist four points, no three of which are collinear. 

Just as we did with the affine plane, we can use a vector space to model a projective 
plane. This time, we start with a 3-dimensional vector space V over some field F. We 
take as our points the ! -dimensional subspaces of V .  The 2-dimensional subspaces 
of V are our lines . Since two distinct ! -dimensional subspaces determine a unique 
2-dimensional subspace, axiom 1 is satisfied. Similarly, two distinct 2-dimensional 
subspaces meet in a unique ! -dimensional subspace. Hence, axiom 2 follows .  Finally, 
we can easily find vectors to satisfy axiom 3. For instance, we could use the vectors 
( 1 ,  0, 0) , (0, 1 ,  0) , (0, 0, 1 ) ,  and ( 1 ,  1 ,  1 ) .  

For our purposes, we only need one specific projective plane. Referring to the vector 
space model above, it would correspond to a 3-dimensional vector space over the finite 
field with only 2 elements, GF(2) . This is probably the most famous projective plane 
and is more commonly known as the Fano plane. It contains 7 points, 7 lines (one 
of which is represented by the circle) , and every line contains exactly 3 points (see 
FIGURE 2). 
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From the Fano plane, we get a 2 - (7 , 3 ,  1)  design by letting the lines of the plane 
represent the blocks of our design (see [2] for much more on this famous design). 
That's not quite what we want. Recall that we are looking for a design on 8 points, 
not 7, in order to eventually build the larger design on 16 points. We can use the Fano 
plane to build the design we need. 

Label the points of the Fano plane with the integers I through 7 and consider the set 
of these points together with one additional point labelled 8 . These will be the points 
of our new design . The blocks for our new design are of two types .  The first type of 
block is a line of the Fano plane together with the extra point 8. The second type of 
block is any set of four points of the Fano plane such that no three of the points are 
col l inear. Such a set of points is known as a hyperoval. For instance, in the labelling in 
F IGURE 2, note that points I ,  2, 3, and 4 form a set of 4 points, no 3 of which lie on a 
common l ine. Hence, these points form a hyperoval . Enumerating all such hyperovals 
and combining these with the other type of blocks defined above, we obtain the 1 4  
blocks in TA BLE  2. 

TAB L E  2:  B l ocks of the 
3 - (8 ,  4 ,  1 )  des ign .  

1 { I , 2, 5 ,  8} { 3 ,  4 ,  6 ,  7} 

2 { I ,  3 ,  6, 8} {2 , 4, 5 ,  7} 

3 { 1 , 4 , 7 , 8} {2 ,  3 ,  5 ,  6} 

4 {2, 3 ,  7 ,  8} { I ,  4 ,  5 ,  6} 

5 {2 ,  4, 6, 8} { I , 3, 5 ,  7 } 

6 { 3 ,  4, 5, 8 }  { I , 2, 6 ,  7 }  

7 {5 ,  6, 7, 8 } { I , 2, 3 ,  4} 

Note that we can write the blocks in a table so that any two blocks in a row are 
disjoint. One can easily check that any three of our points (the points of the Fano plane, 
plus the additional point 8) lie together in exactly one block from TABLE 2. Hence, 
we have constructed a 3 - (8 , 4, 1) design. Moreover, we have solved the golfer's 
dilemma in the case when there are 8 golfers. That is, we have constructed a 7-day 
schedule (the rows of TABLE 2) in which every 3 golfers will play together exactly 
once. 
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A better solut ion  

We can use  the 3 - (8 ,  4, 1 )  design to  build the 3 - ( 16 , 4, 1 )  design we seek. For each 
row of TABLE 2, we will construct a golf schedule for 5 days, thereby giving us the 
35 day schedule we need. Let B = {a , b, c, d} be any block from TABLE 2. Then the 
block B constructs 10 new blocks in the manner shown in TABLE 3 .  

TAB L E  3 :  1 0  new b locks from the o ld  b lock { a ,  b, c ,  d} . 

1 {a , b, c, d}  {a  + 8 ,  b + 8 ,  c + 8 ,  d + 8} 

2 {a + 8 , b + 8 ,  c, d}  {a , b ,  c + 8 ,  d + 8}  

3 {a + 8 , b, c + 8 ,  d}  {a , b + 8 ,  c ,  d + 8}  

4 {a + 8 , b, c, d + 8} {a , b + 8 ,  c + 8 ,  d}  

5 {a , b, a + 8 ,  b + 8} {c ,  d ,  c + 8 ,  d + 8}  

So each block of the old design from the Fano plane is used to construct 10  new 
blocks of the design we seek. Hence, we obtain 14 · 10 = 140 new blocks . All we 
need now is to partition these 140 blocks into 35 sets (representing the days) of 4 
blocks each (representing the groups of golfers) . 

We are finally ready to construct our solution to the golfer's  dilemma. We con
struct the 4 sets of 4 golfers each for any particular day by first choosing a row from 
TABLE 2, and then constructing the four associated groups using a row from TABLE 3 .  
For instance, i f  we  select row 4 of  TABLE 2 and row 2 of  TABLE 3 ,  we  obtain the four 
groups :  

{ 10, 1 1 ,  7, 8} ,  {9 ,  12 ,  5 ,  6} , {2 ,  3 ,  1 5 ,  16} , { 1 ,  4, 13 ,  14} . 

It is not too difficult to see that this construction gives us what we want. First note 
that any particular day partitions the 16 golfers into four groups of four since the 
groups in any row of TABLES 2 and 3 are disjoint. In addition, 3 points of the new 
design determine a unique block since 3 points from the 3 - (8 ,  4, 1 ) design determine 
a unique block. This follows since we always alter an even number of entries in the 
original blocks to obtain the new blocks . As a result, for any given triple {a , b, c} ,  we 
can always backtrack through the tables to find the block that contains a, b, and c. This 
shows that we indeed have a 3 - ( 16 ,  4, 1) design. 

For instance, suppose we want to find the unique block containing { 1 ,  1 1 ,  14} . First, 
we reduce the integers by subtracting 8 from any value larger than 8 and label the re
sults as a = 1 ,  b = 3, and c = 6. Next, we look for the row in TABLE 2 containing 
{ 1 ,  3 ,  6} as a subset of a block. This is row 2. Now we look for the row in TABLE 3 
that will keep a unaltered, but adds 8 to b and c. This is row 4. Hence, the day cor
responding to rows 2 and 4 of the two tables (respectively) has golfers 1 ,  1 1 , and 14  
playing together (with golfer 8) . 

Note that taking all possible combinations of rows of the two tables gives us the 35 
day schedule we desire. Hence, we can construct a 35 day schedule for the 1 6  golfers 
such that every group of three golfers will play together in a group exactly once. 

Can we go further? 

Is this the best we can do? Let's think about extending our old argument. Recall that 
John got nervous when he played with both Bill and Howard and that three golfers 
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uniquely determine a group. Hence, when John, Bill, and Keith play together, the 
fourth golfer, say Howard, is uniquely determined. Suppose that John, Bill, and Keith 
enjoy playing together, but do not necessarily want Howard as their fourth every time 
they are together. What are we saying? Essentially, we want every possible combina
tion of 4 players to be together exactly once. Is it unrealistic to ask for such an extreme 
condition? 

Let's start with some simple counting.  Again, we look at everything from John's 
perspective. If he plays with every possible combination of 3 other golfers, then he 
would have to play exactly C:) = 455 times .  This would certainly not be obtainable in 
a summer ! But mathematically, it certainly seems possible and it is (see Theorem 38 . 1  
in [6] ) .  Realistically, a solution that takes this much time to complete would probably 
not be feasible for the average golfer. Hence, in my opinion, the solution given in the 
previous section is the best possible. My father-in-law seemed to like it too. 

For more on projective and affine geometry and its connections to some modem 
problems in design theory, as well as the theory of error correcting codes and cryptog
raphy, you may want to check out Projective Geometry by Beutelspacher and Rosen
baum [1] . 
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5 0  Yea rs Ago i n  the MAGAZ I N E  
From the preface of Theory of Functions of a Complex Variable, Vol.  1 ,  by Con
stantin Caratheodory, New York, Chelsea Publish ing Company, 1 954, 3 1 4  pp. ,  
$4 .95 ,  quoted as  part of  a posthumous review of  the book in  Vol. 28, No. 2, 
(Nov.-Dec . ,  1 954), 122: 

The book begins with a treatment of Inversion Geometry (geometry of 
circles). This subject, of such great importance for Function Theory, is 
taught in great detail in France, whereas in German-language and Engli sh
language universities it is usually dealt with in much too cursory a fashion. 
It seems to me, however, that this branch of geometry forms the best avenue 
of approach to the Theory of Functions ;  it was, after all, his knowledge of 
Inversion Geometry that enabled H. A. Schwarz to achieve all of his cele
brated successes . 
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The arithmetic progression 1 ,  2, 3 can be broken into two consecutive pieces that have 
equal sums by the relation 1 + 2 = 3 .  The first author, in the problem pages of jour
nals [13, 14] , wondered if an arithmetic progression could be found that breaks into 
three consecutive pieces with equal sums . Here are some examples that come close: 

4 + 5 + 6 = 7 + 8 = (9 + 10  + 1 1 ) /2, 

3 + 5 + 7 + 9 = 1 1  + 13 = ( 1 5  + 17 + 19 + 2 1 )/3 , 

(6 + 7 + 8 + 9)/2 = ( 1 0  + 1 1  + 1 2  + 1 3  + 14) /4 = 1 5 .  

This appealing question has a simple answer that turns out to b e  related to a certain 
Diophantine equation considered by Euler, namely 

( 1 )  

where w e  are looking for integer solutions .  I n  tum, ( 1 ) i s  related to the possibility of 
finding four squares as the consecutive terms of an arithmetic progression, a challenge 
issued by Fermat in 1640. We' ll follow this thread and further address the question 
of arithmetic progressions with three parts in other fixed ratios . We close the article 
with four open questions, which we hope the reader will take as an invitation to further 
explore some of the mysteries of Diophantine equations.  

Reduct i o n  to a Diophant i n e  equat ion  

So far we have been talking about sequences of  integers. We may just a s  easily ask 
these questions for arithmetic progressions of real numbers . By an n -term arithmetic 
progression we therefore mean real numbers e1 , e2 , • • •  , en with common difference 
ei+l - e; = /j. > 0 for 1 .::::: i < n .  If n = a + b + c, with positive integers a, b, c, we 
give names to the sums of the first a, the middle b, and the final c terms: 

a+b 
s2 = I: ej , 

i=a+l 

n 
s3 = I: e; .  

i=a+b+l 
(2) 

The question we address in this article is: What are the possibilities for the ra
tios S1 : S2 : S3 ? In particular, as we investigate in this section, can we ever have 
S1 = S2 = S3 ? Clearly dividing each term in an arithmetic progression by the same 
number does not alter the ratios sl : s2 : s3 so after dividing by fj. we may make the 
simplifying assumption that the common difference of our progressions is always 1 .  
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Using 1 + 2 + · · · + n = n (n + 1 )/2 w e  have 

2Sl = a (2el - 1 + a) = a (2ea+l - 1 - a) ,  

2Sz = b(2ea+ l - 1 + b) = b (2ea+b+l - 1 - b) ,  

2S3 = c(2ea+b+l - 1 + c) .  

Setting S1 = S2 we find 

Similarly Sz = S3 implies 

a2 + bz 
2ea+l - 1 = ------

a - b 

bz + cz 
2ea+b+l - 1 = --

b - e  
Since ea+b+ l = ea+ l + b we may solve for ea+ l in equations (3) and (4) to get 

Rearranging we obtain the relation 

ab2 + a2b + bc2 + b2c - ac2 - a2c - 2abc = 0.  

(3)  

(4) 

(5) 

Note that if any two of the positive integers a ,  b ,  c are equal then (5) implies that all 
three must be equal . Therefore by (3) and (4) we must have a ,  b, c all distinct. 

PROPO S I TI O N  I .  There exists an arithmetic progression with beginning, middle, 
and end having equal sums (with a, b, and c terms respectively) if and only if there 
exist positive distinct integers a ,  b ,  c satisfying equation (5) . 

Proof We have proved one direction. In the other, given such a, b ,  c let ea+ l be 
the rational number satisfying equation (3) and set e1 = ea+ l - a . Then, as we have 
seen, the arithmetic progression e 1 , e1 + I ,  . . .  , e 1  + a  + b + c - 1 has the desired 
property. Also note that, if we like, we can make each term an integer by multiplying 
by 2(a - b) . This completes the proof. • 

Let us therefore try to find integers a ,  b ,  c satisfying (5) .  Solving for b ,  we get 

b2 (a + c) +  b(a - c)2 - ac(a + c) = 0, 

a quadratic equation with discriminant 

8 = (a - c)4 + 4ac(a + c) 2 = a4 + 14a2c2 + c4 • 

Set p = a +  c and q = a - c; then 8 = q4 + p2 (p2 - q2) . We have 

,J8 - q2 
b =  , 

2p 

which implies that we must have 

p4 _ pzqz + q4 = rz 

for some r . Conversely if p and q are integers satisfying (7) then 

a = p(p + q) ,  b = Jp4 - p2q2 + q4 - q2 , c = p (p - q) 

(6) 

(7) 
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are easily shown to satisfy (6). In this way (5) and (6) have solutions if and only if (7) 
does. 

Equations like this one, where we seek only integer or only rational solutions,  are 
called Diophantine equations in honor of Diophantus of Alexandria. Diophantus, who 
is thought to have lived in the third century [1] ,  wrote the Arithmetica, where many 
such equations are solved. 

In fact, p4 - p2q2 + q4 can be a square only if p = ±q or pq = 0. This is a result 
of Euler [7] from the 1 8th century. For completeness, we include an elegant proof 
of this fact by "infinite descent," which is due to Pocklington [15] . The result is also 
mentioned in Dickson's encyclopedic History ofthe Theory of Numbers [4, p. 638] .  

This method of proof, first employed by Fermat, is very useful in  proving negative 
statements, for instance, that a certain equation has no (or only trivial) integer solu
tions. As we shall see, from an assumed initial solution to an equation, a new, strictly 
smaller, solution is constructed. Repeat the argument and an infinite chain of solutions,  
descending in size, appears. But this contradicts the fact that our solutions are bounded 
positive integers and hence finite in number. Thus our initial assumption of a solution 
to the equation was false. 

Pocklington's proof uses the following well-known parameterization of Pythago
rean triples: Let x2 + y2 = z2 for positive integers x ,  y ,  z with gcd(x , y) = 1 .  Nec
essarily one of x , y (say y) is even and there exist integers u , v with gcd(u , v) = 1 ,  
u > v > 0 such that 

For a proof see the classic text by Hardy and Wright [9, Theorem 225 ] .  

PROPO SITION 2 .  If p4 - p2q2 + q4 = r2 for positive integers p , q ,  r, then p = q.  

Proof Assume that p ,  q > 0 are integer solutions to the above equation with 
gcd(p , q) = 1 .  Suppose also that q is even (we will treat the case of p , q odd later) 
and that pq is minimal among all integer solutions .  We have 

(p2 _ q2)2 + (pq)2 = r2 

and gcd(p2 - q2 , pq) = 1 so that 

pq = 2u v .  

(8) 

(9) 

( 10) 

Considering the first equation (9) modulo 4 we see that v is even. In plainer language, 
since a square must have remainder 0 or 1 when divided by 4, the only possibility is 
that v2 is divisible by 4. Next let 

a =  gcd(p , u ) ,  f3 = gcd(p , v ) ,  y = gcd(q , u ) ,  8 = gcd(q , v) 
with a, {3 ,  y odd and 8 even. We have by ( 1 0) 

p = a{J , q = 2y8 ,  u = a y , v = {38 .  

Putting these back into (9) we  obtain 

!32 (a2 + 82 ) = y2 (a2 + 482 ) .  ( 1 1 )  

We want to demonstrate next that gcd(a2 + 82 , a2 + 482) equals 1 or 3 .  To see this 
suppose d divides both A = a2 + 82 and B = a2 + 482 . Then d will be a divisor 
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of B - A = 382 
and 4A - B = 3a2 . Since a and 8 are relatively prime d must be 

a factor of 3. Taking d as large as possible shows that gcd(a2 + 82 , a2 + 482) is a 
factor of 3 as we said. But it cannot be 3 since 3 does not divide a2 + 82 

(squares 
must have remainders of 0 or 1 when divided by 3) .  So we've managed to show that 
gcd( a2 + 82 , a2 + 482) = 1 . Combine this with the easy fact that gcd(/3 , y ) = 1 and 
we see which parts of each side of ( 1 1 ) are relatively prime. Hence we must have 

/3
2 = a2 + (28)2 ' 

y 2 = a2 + 82 _ 
( 1 2) 
( 1 3) 

Applying the Pythagorean parametrization again to ( 1 2) we find a =  �2 - 172 and 8 = 
�11 ·  Replacing these in ( 1 3) we get 

(� 2 _ 172
)
2 + (� 17)

2 = y 2 . 

This is of the same form as the original equation and we see that 

� 11  = 8 < 2y8 = q < pq , 

contradicting the initial claim that pq was minimal and proving that there are no solu
tions with p or q even. 

We treat the remaining case that solutions p, q are both odd. Equation (8) now 
implies that 

provided p =/= q .  Also one of u ,  v is necessarily even. Therefore 

which we have already seen is impossible. This completes the proof of the proposition . 
• 

So, if we look for a solution to (5) with positive distinct integers a ,  b, c and 
a > c > 0, say, then we must have p = a + c = a - c = q implying that c = 0. Thus 
we have answered our original question . 

PROPO S I TI O N  3 .  It is impossible for an arithmetic progression to have equal be
ginning, middle, and end sums. 

Fou r  squares i n  ar i th met ic  p rogress ion  

Fermat wrote to Mersenne in  May 1 640 [8] . He  included four challenges for Frenicle 
de Bessy, a number theorist in Paris: 

Pour savoir si M. Frenicle ne procede point par tables, proposez lui de 

(i) Trouver un triangle rectangle duquel l 'aire soit un nombre quarre; 
(ii) Trouver deux quarrequarres desquels Ia somme soit quarrequarree; 

(iii) Trouver quatre quarres en proportion arithmetic continue; 
(iv) Trouver deux cubes desquels Ia somme soit cube; 
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S'il vous repond que jusques a un  certain nombre de chif.fres i l  a eprouve 
que ces questions ne trouvent point de solution, assurez-vous qu 'il procede par 
tables. 

From this we can detect Fermat's sensitivity to the difference between general 
proofs and empirical observations based on a table of factorizations of numbers (which 
today would be replaced by a computer search) . 

The first asks for a right-angled triangle (with integer length sides) whose area is a 
square. The Pythagorean parametrization reduces this to finding integer solutions for 
x4 - y4 = z2 , as shown by Pocklington [4 , p. 615 ] .  

The fourth and second ask for solutions to x 3 + y3 = z3 and x4 + y4 = z4 . This 
was only the second time he had mentioned to his correspondents these cases of what 
became known as his Last Theorem. In about 1 636, he sent Mersenne the same two 
problems and asked him to propose them to St. Croix . According to Dickson it was 
probably soon after, in 1 637, that he made his famous note in the margin of his copy 
of Diophantus 's Arithmetica. 

The third challenge asks for four squares in arithmetic progression and this turns 
out to be related to our original question. Fermat seems to have been the first to 
look for such squares [ 4, p. 440] . That they do not exist follows from the fact that 
x4 - x2y2 + y4 = z2 has only trivial solutions .  We cannot be sure, but, as we shall 
discuss later, that might be what Fermat had in mind. 

We can prove that four squares cannot be in arithmetic progression quite easily 
using Proposition 3 and the fact that the sum of the first n odd numbers is the nth 
square 

1 + 3 + 5 + · · · + (2n - 1 ) = n2 • 

(This has an easy geometric proof--can you find it? See Nelsen ' s proof without 
words [12] for something similar. ) Thus if A 2 , B2 , C2 , D2 are four consecutive terms 
of an arithmetic progression with 0 < A < B < C < D we can take the sequence of 
consecutive odd numbers 2A + 1 ,  2A + 3 ,  . . .  , 2D - 1 and see that 

(2A + 1 ) + (2A + 3) + · · · + (2B - 1 )  = (2B + 1 ) + (2B + 3) + · · · + (2C - 1 )  

= (2C + 1 )  + (2C + 3 )  + · · · + (2D - 1 ) ,  

which contradicts Proposition 3 . 
By the same reasoning we cannot have four triangular numbers in arithmetic pro

gression. More generally it follows from Proposition 3 that for any integers A ,  B ,  C, D 
and any real r we cannot have 

A (A + r ) ,  B(B + r ) ,  C(C + r) ,  D(D + r) 

in  arithmetic progression. 

Euler's contr i but ion 

Euler proved in  1780 [7] that the product of  four consecutive positive terms of  an 
arithmetic progression cannot be a square. We will apply this result to find another 
proof of Proposition 3 . Assume that we have an arithmetic progression with equal 
beginning,  middle, and end sums. It leads to a solution of (6), which we may rewrite 
as 

b(a - c)2 = (a + c) (ac - b2) .  
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Letting p = a + c ,  q = a - c a s  before, w e  find 

and consequently 

q2 (p + 4b) = (p - 2b)p (p + 2b) . 

In terms of a ,  b ,  c, this is 

(a - c)2 (a + c + 4b) = (a + c - 2b) (a + c) (a + c + 2b) . 

If we multiply both sides of the above by (a + c + 4b) we see that 

(a + c - 2b) (a + c) (a + c + 2b) (a + c + 4b) 

is a square. According to Euler this is impossible and we have a second proof of Propo
sition 3 .  

To close this circle o f  ideas w e  prove Euler' s result. Suppose that there exist rela
tively prime integers m ,  n :::: I so that 

m (m + n) (m + 2n) (m + 3n) = r2 . ( 14) 

Where do the prime factors of r appear on the left-hand side of this equation? We must 
have gcd(m , m + 2n) dividing 2, gcd(m + n ,  m + 3n) dividing 2, and gcd(m , m + 3n) 
dividing 3 ,  eight possibilities in all . This means that no prime bigger than 3 can appear 
in different terms of the factorization on the left. Thus, each of m ,  m + n ,  m + 2n , 
and m + 3n is a square except for possible extra factors of 2 or 3 .  Checking the eight 
cases we see, for example, that {m ,  m + n ,  m + 2n , m + 3n } = {2A2 , B2 , 2C2 , D2 ) is 
not possible. This is because dividing 2A 2 , B2 , 2C2 , and D2 by 4 produces remainders 
2, I , 2, and I if each of A ,  B ,  C, and D are odd. But no arithmetic progression can 
have such remainders . One of A, B ,  C, and D may be even, but here too, checking 
each case, the remainders do not correspond to arithmetic progressions. It is routine 
to verify, modulo 3 and 4, that the only three possibilities for m,  m + n ,  m + 2n , and 
m + 3n are 

(i) {A2 , B2 , C2 , D2 ) 

(ii) {6A2 , B2 , 2C2 , 3 D2 ) or 

(iii) {3A2 , 2B2 , C2 , 6D2 ) 

with A ,  B ,  C, and D relatively prime in pairs . We have already shown that (i) is 
impossible. We ' ll prove that (ii) cannot occur. Employ the easily verified identity 

2 (m(m + 2n) - (m + n ) (m + 3n)) = m (m + n) - (m + 2n) (m + 3n) 

from Pocklington [15] to get 

Set 

4A2C2 - B2 D2 = A2 B2 - C2 D2 . ( 15)  

a = 2AC, f3 = BD, y = AB + CD, and 8 = AB - CD. ( 16) 

Then we obtain a2 - {32 = y 8  from ( 1 5) and 2af3 = y 2 - 82 from ( 1 6) .  Therefore 

(a2 _ {32)2 + a2 {32 = � 2 
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for some � and by Proposition 2, we must have a = {3 ,  which yields a contradiction. 
Part (iii) follows with an identical argument (as does part (i)) and this completes the 
proof. • 

Euler [7] used a slightly different approach. See also the discussion in Dickson [ 4, 
p. 635] . Interestingly, finding integer solutions to the general equation 

m(m + n ) (m + 2n ) · · · (m + (k - 1 )n) = r w , ( 1 7) 

(or showing they don' t exist) has resisted many authors .  The case with n = 1 has a 
long history, as described by Johnson [10] , who gives relatively simple proofs of vari
ous cases .  The question was eventually completely settled by Erdos and Selfridge [6] 
in a paper entitled "The product of consecutive integers is never a power." Recently 
Saradha [16] has shown that the only nontrivial solution to ( 1 7) (with k 2:. 3 and n ::: 22 
and w = 2) has (m , n ,  k) = ( 1 8 , 7, 3 ) .  

Back t o  Fermat's fou r  challen ges 

Returning to Fermat' s four challenges, we have seen that their impossibility follows, 
respectively, from the lack of nontrivial solutions to four Diophantine equations 

(i) x4 - y4 = zz , 

(ii) x4 + y4 = zz , 

(iii) x4 - xzyz + y4 = zz , 

(iv) x3 + i = z3 • 
Frenicle did finally prove that x4 - y4 = z2 has no nontrivial solutions with help from 
Fermat [ 4, p. 6 17 ] .  He  also came up  with a formula supplying three squares in  pro
gression [ 4, p. 435 ] .  But it fell to Euler to prove the impossibility of the first two cases 
of Fermat' s  Last Theorem [ 4, p. 545, p .  6 1 8] and that four squares cannot be in a 
progression, as we have seen [7] . 

Did Fermat himself have proofs? He certainly claimed that all four had only trivial 
solutions .  We can only know with certainty that he had proved (i) and (ii) . These two 
proofs, essentially identical, are rare examples of Fermat supplying his detailed argu
ments [4, p. 6 1 5] ,  [17, p.  79] . I n  Weil ' s words, [17, p .  1 1 4] : "At that early date, Fermat 
had perhaps no more than plausibility arguments for the fact that these problems have 
no solution; but eventually he must have obtained a formal proof also for the third one, 
since we are told so by Billy in his Inventum Novum." 

We cannot be sure what this formal proof of (iii) was since no trace of it appears 
in Fermat's  writings. Weil laments that Billy did not find out more: "How grateful 
we should be to the good Jesuit, had he shown some curiosity toward such 'negative' 
statements . . .  " 

One possibility is that Fermat worked directly with the equation x4 - x2y2 + y4 = 
z2 and showed it has only trivial solutions using a proof like that of Proposition 2. This 
is appealing because the equations (i) to (iv) above are so similar. 

A second possible approach, outlined by Weil and based on subsequent results of 
Euler that Fermat may have anticipated, is to work with the elliptic curve 

l = -x(x - l ) (x - 4) . ( 1 8) 

It may be shown by the method of descent that this curve has only trivial rational 
solutions .  This implies that four squares cannot be in arithmetic progression, as shown 
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in [17, pp. 1 30-149] . It i s  an easy exercise to transform ( 14) into ( 1 8) .  This i s  done by 
Erdelyi [5] . 

A third approach, due to Erdelyi [5] , is to rewrite ( 1 4) as 

( 1 9) 

He then shows,  using the Pythagorean parametrization, that no solution in positive in
tegers of ( 1 9) is possible, because each solution yields another that makes the quantity 
(m + n ) (m + 2n ) smaller. This again is a classical proof by descent that Fermat could 
have used (he, of course, invented this technique) . So there is no shortage of plausible 
ways Fermat could have proved this theorem. 

As for the final challenge (iv) , the proof of the impossibility of x3 + y3 = z3 can be 
made to follow the same general lines but is harder than the others . It was probably not 
out of the reach of the "Prince of Amateurs" though; see the discussion in Mahoney's 
biography of Fermat [11 ,  p. 357] and also Weil ' s thoughts [17, p. 1 1 8] . 

Ari th met ic  p rogress ions  w ith other  rat ios 

We extend the discussion by letting (S 1 : S2 : S3 ) denote the ratios of the sums (2) . We 
have shown that (1  : 1 : 1 )  is impossible. Here are some ratios involving the numbers 
I ,  2, 3 that are possible: 

( I : I : 2) 4, 5 , 6 ;  7 , 8 ; 9 , 1 0 , 1 1 , 

( 1 : I :  3)  1 , 2 ;  3 ;  4, 5 , 

( 1 : 2 :  2) 6, 7, 8 ; 9, 1 0 ,  I I , 1 2 ; 1 3 ,  1 4 , 1 5 ,  

( I  : 2 : 3 )  1 ;  2 ;  3 ,  

( 1 : 3 : 2) 3; 4, 5 ;  6, 

( I  : 3 : 3) 2, 3; 4 ,  5, 6; 7, 8 ,  

(2 : 1 :  3)  1 2, 1 3 ,  1 4 , 1 5 ,  16 ;  17 ,  1 8 ; 1 9 , 20, 2 1 ,  22 ,  23 . (20) 

Of course by changing the signs of each term in a sequence we can get the ratios in 
reversed order so that, for example, -5 ,  -4; -3 ;  -2,  - 1  yields (3 : 1 : 1 ) .  As with 
Proposition 1 we may reduce the existence question to a Diophantine equation. 

PROPOS ITION 4 .  There exists an arithmetic progression with three parts of a, b, 
and c terms and (S 1 : Sz : S3) = (x : y : z) if and only if there exist positive integers 
a ,  b ,  c satisfying 

(xb - ya)c (b + c) +  (zb - yc)a (a + b) = 0 (2 1 )  

with the restriction that xb =/= ya (or equivalently zb =/= yc  ). 

We leave the proof to the reader. If this sequence exists and its terms differ by 1 
then, as in (3), its first term e1 must satisfy 

ya2 + xb2 
2e l = - 2a + 1 .  

y a  - xb 



VOL .  77,  NO. 4, OCTOBER  2004 2 9 1  

In the examples (20) , we always have a = c .  This i s  not a coincidence. When a = c, 
(2 1 )  reduces to xb - ya = ya - zb or 2ya = (x + z)b and the restriction becomes 
x =I= z. This yields 

PROPOSITION 5 .  For positive integers x ,  y , z with x =I= z, there exists an arithmetic 
progression with three parts in ratio (St : S2 : S3 ) = (x : y : z) .  

Proof We may simply take a = c = x + z and b = 2y . By Proposition 4 the de-
sired progression exists completing the proof. • 

From this we obtain, for example, 

(2 : 2 :  3)  16 ,  17 ,  1 8 , 19 ,  20;  2 1 ,  22, 23,  24; 25 , 26,  27 , 28 , 29,  

(2 : 3 : 3)  20,  2 1 ,  22,  23 , 24;  25 , 26, 27, 28 , 29, 30; 3 1 ,  32, 33 ,  34, 35 .  

Note that, since (2 1 )  is homogeneous in a, b, and c ,  any single solution yields an 
infinite family of solutions J...a ,  J...b ,  J...c for A. a positive integer. 

Next we look for progressions with ratios (x : y : x ) . One way to solve (2 1 )  is to 
look for solutions of the form c(b + c) = wa (a + b) and xb - yc = w (ya - xb) . 
From the first of these equations, let c = a + b and wa = b + c. Therefore a = 2, 
b = w - 1, c = w + 1 and we require w > 1. This yields arithmetic progressions 
with ratios (3w + 1 : w2 - 1 : 3w + 1) parameterized by w > 1 .  This solution (when 
w = 5 and after multiplying by -2) gives 

(2 : 3 :  2) 3 ,  5 ,  7, 9, 1 1 ,  1 3 ;  1 5 ,  17 ,  1 9 ,  2 1 ;  23 , 25 . 

A simpler example for this ratio is 1 ,  2, 3 ;  4, 5 ;  6. The remaining possibilities for 
ratios involving 1 ,  2, 3 are ( 1 :  2 :  1 ) ,  ( 1 : 3 :  1 ) ,  (2 :  1 : 2) , (3 : 1 : 3 ) ,  and (3 : 2 :  3) . 
Solving (2 1 )  for b gives 

b2 (xc + za) + b(za2 + xc2 - 2yac) - yac(a + c) = 0.  

A necessary and sufficient condition for integer solutions is that the discriminant 

be a square. Looking for the ratio (2 : 1 : 2) , for example, we need a4 + 7a2c2 + c4 
to be a square. Using the techniques of Proposition 2 it can be seen [15, 2] that this is 
impossible. Thus no arithmetic progression exists with beginning and end sums twice 
the middle sum. The other four possibilities are unresolved. 

We finish with four challenges to the reader: 

(i) For which values of x ,  y is (x : y : x) a set of possible ratios for an arithmetic 
progression? 

(ii) For positive integers x, y, z with x =/= z is there a way to construct an arithmetic 
progression with the ratio (x : y : z) and strictly positive terms? For example with 
(x : y : z) = (3 : 2 :  1 ) Proposition 5 yields -3 ;  -2;  - 1  but with more work we 
find 

(3 :  2 :  1 ) 9, 10 ,  1 1 ,  . . .  
' 

24, 25 , 26; 27 , 28 , 29, 30, 3 1 ,  32 ,  33 ;  34, 35 ,  36. 

(iii) How many arithmetic progressions (with common difference, say, Ll = 1 and 
parts of any size a ,  b, c but with gcd(a ,  b, c) = 1 ) can represent a given ratio 
(x : y : z) ? 
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(iv) When i s  it possible for the product o f  m consecutive terms o f  an arithmetic pro
gression to be an nth power? 

Acknowledgment. We thank the anonymous referees for their many improvements to the exposition and the 

additional reference. 
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From the CUPM Curriculum Guide 2004-A Report by the Committee 
on the Undergraduate Program in Mathematics 

Mathematics is universal : it underlies modem technology, informs public 
policy, plays an essential role in many disciplines, and enchants the mind. 

-from the Introduction 

Careful reasoning and communication are closely linked. A student who 
clearly understands a careful argument is capable of describing the argu
ment to others. In addition, a requirement that students describe an argu
ment or write it down tests whether understanding has truly occurred. All 
courses should include demands for students to speak and write mathemat
ics, and more advanced courses should include more extensive demands. 
Communicating mathematical ideas with understanding and clarity is not 
only evidence of comprehension, it is essential for learning and using math
ematics after graduation, whether in the workforce or in a graduate pro
gram. 

-from the section Students majoring in the mathematical sciences 

The editor hopes that the mathematics offered in the MAGAZINE "enchants the 
mind" and that our mathematical communications (some written by students) 
stand up as good examples of this art. 
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One of the problems assigned in our elementary Euclidean geometry course is to deter
mine whether or not it is always possible to construct a triangle from the medians of an 
arbitrary triangle. Recall that a median is a line segment from a vertex to the midpoint 
of the opposite side. Such a triangle, if it exists , is called the median triangle of the 
original triangle. The problem is appropriate, because at that point of the course they 
know that it is not always possible to construct the altitude triangle, since the altitudes 
do not always satisfy the triangle inequality. 

Some students approach this problem by drawing a particular triangle, constructing 
its medians, and then using the three medians to construct a triangle. The validity of 
their approach then depends on showing that the medians always satisfy the triangle 
inequality. 

There is a way to circumvent having to prove the triangle inequality for the medians, 
as the following construction shows: 

B D 

A G 

c 

Figure 1 Construct ing the med ian  tr iangle 

As in FIGURE 1,  construct the medians AD, BE, and CF of triangle ABC. Construct 
the point G so that !..GFA = !..EBF and FG = BE, then BEGF is a parallelogram. Here 
we have used the theorem that a simple quadrilateral is a parallelogram if and only 
if one pair of opposite sides is congruent and parallel. Similarly, EGAF and ADCG 
are also parallelograms.  Opposite sides of a parallelogram are the same length, so it 
follows that GC = AD, and that CFG is the median triangle. The construction works 
for any given triangle, so one can conclude that the median triangle always exists .  

As an aside, note that FIGURE 1 shows how to construct from any given triangle 
GFC, another triangle ABC, of which the given triangle GFC is the median triangle. 

2 93 
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Since E i s  the centroid o f  triangle GFC, it also can b e  used to show that the median 
triangle of the median triangle GFC is similar to the original triangle ABC, with pro
portionality 3 to 4 .  

Also, the proof that CFG is the median triangle uses the properties of a parallel
ogram, which in tum require the parallel postulate, and this places it clearly in the 
domain of Euclidean geometry. On the other hand, the construction itself does not re
quire the parallel postulate. This note is concerned with the question as to whether this 
construction also produces a median triangle in hyperbolic geometry. In fact, we may 
ask if the median triangle even exists in hyperbolic geometry. The next section shows 
that it does, but the final section shows that the preceding construction never produces 
it. 

Euclidean and noneuclidean geometries The distinction between Euclidean and 
noneuclidean geometries lies in their treatment of the parallel postulate. Euclid's fa
mous fifth or parallel postulate states : 

If a straight line falling on two straight lines makes the interior angles on the 
same side together less than two right angles, the two straight lines, if produced 
indefinitely, meet on that side on which the angles are together less than two 
right angles. 

An equivalent form is attributed to the Scottish mathematician John Playfair and is 
known as Playfair's Axiom: 

Through a given point not on a given line there can be drawn only one line 
parallel to the given line. 

In hyperbolic geometry, a type of noneuclidean geometry that retains the first four 
postulates of Euclid, the parallel postulate is replaced by the following: 

Through a given point not on a given line there can be drawn at least two lines 
parallel to the given line. 

Hyperbolic geometry is logically consistent, and this discovery is sometimes cred
ited as being the one that ushered in the modem era of mathematics. The development 
of hyperbolic geometry is attributed to Lobachevsky, Bolyai, and Gauss, but there is 
certainly some evidence that Euclid had an inkling of its existence. In The Elements, 
he carefully refrained from using the parallel postulate until the last possible moment. 
This fortunate occurrence means that the body of knowledge developed up to that point 
is valid in both Euclidean and hyperbolic geometry. This intersection is known as ab
solute geometry-it is the geometry obtained from the first four axioms of Euclidean 
geometry without the parallel postulate. 

In absolute geometry, parallel lines do exist. Assuming that straight lines are infinite 
in extent, it can be proven without use of the parallel postulate that through a point not 
on a given line, it is possible to draw at least one line parallel to the given line. This is 
essentially Proposition 28 in the Elements , the last proposition prior to the introduction 
of the fifth postulate. Although it is not listed in Euclid, another consequence of the 
first four postulates is the following: 

PROPOSITION. In absolute geometry, the length of the median to any side of a 
triangle is less than the average of the lengths of the other two sides. 
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Proof In FIGURE 2, extend the median AD to G so that AD = DG. 

C G 

� A B 

Figure 2 Twice a med ian is seen to be less than the s um of the other two s ides 

2 9 5  

By side-angle-side congruency, triangles ABD and GCD are congruent, so  CG = AB. 
The triangle inequality (Euclid' s  Proposition 20) gives 2 · AD =  AG < AC + CG so 

AC + AB 
AD < ---2 • 

It is now an easy matter to see that the median triangle exists in absolute geometry, 
In FIGURE 3, P is the point of intersection of the medians BE and CF. 

A 

B D c 

Figure 3 Ex istence of the med i an tr iangle i n  absol ute geometry 

From the proposition, the length of the median AD is less than BF + CE. But, by 
the triangle inequality 

BF < BP + PF and 

CE < EP + PC, 

so it follows that AD < BE + CF. This shows that the medians of ABC satisfy the 
triangle inequality, and so the median triangle exists . 

The median triangle in hyperbolic geometry Many results of hyperbolic geometry 
seem strange to those familiar only with Euclidean geometry, the most striking one 
being that 

1 .  The sum of the interior angles of a triangle is strictly less than 1 80° . 
An equivalent formulation is 

2. If ABCD is a quadrilateral with AD = BC and 

LEAD + L CBA = 1 80° , 

then AB < CD. 
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B A 

IS/ 
c D 

Figure 4 If AD = BC and L BAD + !_ CBA = 1 80° , then AB < CD 

To see why the two statements are equivalent, note that in FIGURE 4, the first state
ment implies that 

LDAB + LABD + LBDA < 1 80° = LDAB + LABD + LDBC. 

So, LBDA < LDBC, and it follows from the "Open Jaw Theorem" applied to triangles 
BDA and DBC that AB < CD. 

Recall that the Open Jaw Theorem states that If triangles ABC and A' B'C' have 
AB = A' B' and AC = A'C', then BC < B'C' if and only if LA < LA' . 

Moise [3, p. 1 2 1 ]  calls this the "Hinge Theorem" and it is valid in absolute geome
try. 

Conversely, suppose we are given a triangle ABD. Let C be the point on the side 
of BD opposite to A such that L CBA + LEAD = 1 80° and such that BC is congruent 
to AD. By the second statement, AB < CD, and so applying the Open Jaw Theorem 
we have 

LEAD + LADE + LDBA < LEAD + L CBD + LDBA = 1 80° . 

One of the interesting consequences of the equivalence of these two statements is: 

LEM M A .  In hyperbolic geometry, the line segment joining the midpoints of two 
sides of a triangle is less than half the length of the third side. 

A 

B 

Figure 5 The segment jo i n i ng m idpoi nts 

Proof Extend the line through the midpoints E and F so that EF = EH. By side
angle-side congruence, triangles AFE and CHE are congruent, so LAFE = L CHE. 
Consequently, BF = HC and 

LBFH + !_ CHF = LBFH + LAFH = 1 80° , 

and so by the previous discussion, 2FE = FH < BC. • 
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I t  now can b e  shown that the triangle GFC constructed i n  FIGURE 1 i s  never the 
median triangle in hyperbolic geometry. To see why, we have reproduced the construc
tion in FIGURE 6 below, but have added the segment ED. Note that ED is not assumed 
to be collinear with EG, and recall that D, E, and F are the feet of the medians from 
A ,  B ,  and C .  

The construction guarantees that GF i s  congruent to the median EB, but w e  will 
show that GC is never congruent to AD. For a contradiction, let us suppose that GC is 
congruent to AD. 

B 

A G 

Figure 6 The or ig ina l  construct ion cons idered i n  hyperbo l i c  geometry 

From the lemma, we have 

1 
ED < lAB = FB. 

In the quadrilateral FBEG we have L GFB + LEBF = 1 80° , so 

FB < EG. 

Therefore ED < EG and applying the Open Jaw Theorem to triangles GCE and DAE 
shows that LGCE > LDAE, that is, LGCA > LDAC. 

On the other hand, the lemma also shows that 

1 
AG = EF <  lBC = DC, 

and applying the Open Jaw Theorem to triangles GCA and DAC shows that L GCA < 
LDAC, and this contradiction shows that GFC can never be the median triangle in 
hyperbolic geometry. 
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Archimedes '  proposition determining a sum of squares has been displayed geometri
cally in a previous Proof Without Words [1] . We generalize to a sum of cubes, stating 
the result first as Archimedes might have, in the geometric language he used for his 

sum of squares .  Then we give a proof befitting the geometric language. 

If a series of any number of lines be given, which exceed one another by an equal 
amount, and the difference be equal to the least, and if other lines be given equal 

in number to these and in quantity to the greatest, the cubes on the lines equal 
to the greatest, plus the cube on the greatest and the triplicate of the rectangular 
solids contained by the least and the squares of the lines exceeding one another 

by an equal amount, less the rectangular solids contained by the square on the 
least and those exceeding one another by an equal amount, will be the quadruple 

of all the cubes on the lines exceeding one another by an equal amount. 

In modern symbolism, 

n n n 
(n + l )n3 + 3 2::>2 - I > =  4 2::> 3 · 

i = l  i = l  i = l  
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Further investigation has revealed a generalization for arbitrary exponents. A geo
metric figure for a sum of fourth powers, which proves 

n n n n 
(n + l )n4 + 6 I > 3 - 4 I > 2 + I > = s I > 4 , 

i = l  i = l  i = l  i = l  

is challenging, but is underway via a diagram involving shadows of  hypercubes .  

Acknowledgment. Thank you to  David Pengelley for suggestions and support, and to  Roger Nelsen for the 

beautiful electronic layout of the figure . 
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An October  Warn i ng 

Possibly Gilman ought not to have studied so hard. Non-Euclidean calculus and 
quantum physics are enough to stretch any brain; and when one mixes them 
with folklore, and tries to trace a strange background of multi-dimensional re
ality behind the ghoulish hints of the Gothic tales and the wild whispers of the 

chimney-corner, one can hardly expect to be wholly free from mental tension . . . .  
The professors at Miskatonic had urged him to slacken up . . . .  But all these pre
cautions came late in the day, so that Gilman had some terrible hints from the 
dreaded Necronomicon . . . .  

From The Dreams in the Witch-House, by H .  P. Lovecraft 
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Everyone knows how easy it is to describe all solutions to the Diophantine equa
tion a2 + b2 = c2 , and how difficult it is to prove the nonexistence of solutions to 
a" + b" = c" for n > 2. Mixing the easy equation with the hard one, we shall demon
strate that for n :=: 2, all solutions to a2 + b2 = en can also be easi ly obtained by ele
mentary number theory. We use only the simplest properties of the Gaussian integers, 
the complex numbers whose real and imaginary parts are both integers . 

To set the stage, recall the situation when n = 2. The Pythagorean triples of positive 
integers that are primitive (that is ,  have no common prime factors) all have the form 
(a ,  b, c) or (b ,  a ,  c) where a = x2 - y2 , b = 2xy ,  c = x2 + y2 , where x > y are rela
tively prime integers of opposite parity. This can be expressed more compactly using 
the Gaussian integer z = x + yi and its conjugate z = x - yi , whereby 

c = zz .  

Al l  solutions to  a2 + b2 = c2 are multiples of  the primitive solutions. 
In general , for n :=: 2, we demonstrate that all primitive solutions of a2 + b2 = en 

have the form (a ,  b ,  c) , where 

a =  Re(zn ) ,  

a =  Re(zn w) , 

b = lm(zn ) , 

b = lm(znw) , 

c = zz when n is odd, 

c = ±zz when n is even, 

with z = x + yi ,  where x and y are relatively prime integers of opposite parity. In the 
even case, w comes from the set of units { 1 ,  i ,  - 1 ,  -i } .  

If n > 2 ,  not all solutions to a2 + b2 = e n  are multiples of primitive ones. The 
primitive solutions may be deduced by classical methods or from the following two 
theorems . 

THEOREM 1 .  When n :=: 3 is odd, integers a ,  b ,  and c satisfy a2 + b2 = en if and 
only if 

a =  Re(z) , b = lm(z) , 
(n-1 )/2 

C = n ZtZt , 
1=0 

where each Z1 is a Gaussian integer and Z = ft:� I )/2 z:z7-t . 

( 1 )  
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Proof It is easy to see that ( 1 )  will generate solutions to a2 + h2 = en , since 

(n- 1 ) /2 

a2 + h2 = zz = n z� z� = en ° 

t=O 

3 0 1  

To prove the other direction suppose that a2 + h2 = en , where n i s  an odd posi
tive integer. We will use elementary number theory to prove that ( 1) is necessary for 
solutions. Let en have prime factorization 

k m 
en = n p; j n qfi , i= l i = l  

where p 1  = 2, Pi = 1 (mod 4) , j = 2 . . .  , k , and q; = 3 (mod 4) , i = 1 . . .  m .  We 
assume the primes are distinct, and hence n I a i and n I {3; for all i and j .  Further, 
since en is the sum of two squares, it is well known [2] that 2 I {3; and since n is odd, 
2n I {3; for all i .  

Next we factor en into Gaussian primes, which consist of the traditional primes 
q = 3 (mod 4) and Gaussian integers w = u + vi that satisfy u2 + v2 = p , where p 
is a prime not congruent to 3 (mod 4) [1] . By standard number theory [2] , every such 
prime p is the sum of two squares. That is , for j = 1 . . .  , k , each Pi above can be 
written as Pi = 75i Pi where Pi is a Gaussian prime. 

Summarizing, en has Gaussian prime factorization 

k m 
(a + hi) (a - hi) = a2 + h2 = en = n (75iPi t'J n qfi , i= l  i = l  

where n I ai , j = 1 . . . , k ,  and 2n I {3; , i = 1 . . .  , m .  B y  the unique factorization of 
Gaussian integers (up to multiplication by units) into Gaussian primes, we must have 

and 

k m 

n y 8 n � · /2 
a + hi = 75/ P/ q;' w , 

j = l  i = l  

k m 
a - hi = n 75�; P? n qfi f2Zi5, i= l i = l  

where w is a unit, and for j = 1 . . .  k,  we have Yi , 8i 2: 0, and Yi + 8i = ai . 

(2) 

Now define ri = Yi mod n for j = 1 . . .  , n .  Since Yi + 8i = ai is a multiple of n , 
we may write Yi = nsi + ri and 8i = nti + (n - ri ) ,  where si , ti 2: O and O :S ri < n .  
Hence, (2) becomes 

a +  hi � j]vt,' P/ ) "P;'P;-'' ([V,;'") " w .  (3) 

For a given exponent 0 :::=: e :::=: n, the product of numbers of the form we wn-e will 
still be of that form, and replacing w by w if necessary, we can assume e :::=: (n - 1 )  /2. 
Hence for t = 0, 1 , . . .  , (n - 1 )  /2, we let z1 denote the product of all terms in (3) of 
the form w1 wn-t . Note that terms of the form wn have the form uf w n , and that w is 
itself an nth (odd) power. Hence 

(n-1 )/2 

a + hi =  n 
t=O 

and ( 1 )  follows .  • 
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THEOREM 2 .  When n 2: 2 is even, integers a ,  b ,  and c satisfy a2 + b2 = en if and 
only if 

a = rn12 Re(zw) , 
(n-2)/2 

c = ±r n ZrZt 
t=O 

(4) 

where r is a positive integer, w is a unit, each Zr is a Gaussian integer, and z = 
TI(n-2)/2 -t n-t t=O ZrZt · 

Proof The proof follows along the same lines as the previous one. The only sub
tlety to point out is that although 2 and n divide {3; , 2n might not divide {3; . However, 
the term Tim qfJi /2 = (flm qfJi /n)nf2 and the (integer) term of the form -zn12zn12 can t = l  l t = l  I t l 
be absorbed into the integer rn/2 . • 
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On the Two- Box Paradox 
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On a game show, you are presented with two identical boxes. Both boxes contain 
positive monetary prizes, one twice the other. You are allowed to pick one box and 
observe the prize x > 0, after which you can choose to trade boxes. In terms of simple 
expected value, it is always better to trade since 1 (2x ) + 1 ( � )  = ¥ > x .  That is the 
paradox .  

S imple thought experiments suggest that a sufficiently large observed prize would 
cause a player not to trade, despite the mathematical computation of expected value. 
In individual cases , this creates some threshold, which depends on the observed prize, 
for ceasing to trade. A player may have in mind prior probabilities about what prizes 
the game show would offer, so that an observed prize of $ 1 0,000, for instance, would 
not yield equal judgmental odds of $20,000 or $5 ,000 in the unobserved box. The 
judgmental probability approach to the two-box problem seeks to develop optimal 
threshold strategies in terms of prior distributions on the set of possible prizes .  Recent 
articles in this MAGAZINE have focused on the judgmental probability approach, al
though they have also discussed the second line of attack on this problem, expected 
utility [2, 3] . 

In expected utility theory, it is assumed than an individual has an underlying utility 
function for wealth. This utility function is increasing because it is presumed that an in
dividual will always prefer more wealth to less wealth. In addition, the utility function 
is concave because it is presumed that an individual will have nonincreasing marginal 
utility for wealth. The utility function u is thus an increasing, concave function from 
the positive half line into the real line. The scaling on this function is unimportant be
cause a positive linear transformation a + bu ,  with b > 0, is equivalent for individual 
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decision making. Finally, linear utility u ( w) = w,  which is inherent in the simple state
ment of the two-box paradox, really represents a boundary case. Economists normally 
assume strictly diminishing marginal utility for wealth, for instance, a person prefers 
$ 100,000 of wealth to $50,000 but he has less use for an additional dollar when he 
has $ 100,000 than when he has $50,000. 

To recapitulate, we assume that an individual has an underlying utility function, 
or preference function, for wealth, even though he or she may not have detailed this 
function. The expected utility hypothesis takes this notion of utility of wealth one step 
further. It is assumed that a rational individual will explicitly model his utility function 
for wealth u and will select among risky prospects based on maximal expected utility. 
In the context of the two-box game, it is assumed that a rational individual will trade if 
and only if ( l j2)u (wo + 2x) + ( l j2)u (w0 + xj2) > u ( w0 + x) ,  where w0 is his initial 
wealth and x is the observed prize. Note that we are not deviating from the 50-50 prize 
distribution between 2x and x /2, which is inherent in the statement of the two-box 
game. There is no injection of judgmental probabilities .  Our subsequent analysis is 
based on expected utility theory alone. 

Expected utility has a rich history dating back to Daniel Bernoulli ' s  1738  resolution 
of the St. Petersburg paradox. In the St. Petersburg game, a fair coin is flipped until a 
head occurs, and a player receives 2n when the first head occurs at trial n .  It is easy to 
see that expected payoff is infinite. Nevertheless, Bernoulli observed that no rational 
individual would pay a huge amount to play this game and he resolved the paradox 
by assuming logarithmic utility for wealth. Later, Karl Menger in 1 934 observed that 
full resolution of the St. Petersburg paradox requires a utility function that is bounded 
above. A nice historical perspective is provided by Fonseca and Ussher [4] . 

Once again, this note focuses on a pure expected utility approach, without reference 
to any prior distribution; the only probabilistic element is the 50-50 prize distribution 
between 2x and x j2, which is associated with the trading gamble when a player in 
the two-box game is faced with two identical boxes and an observed prize of x. In 
that context, we show that the two-box paradox is confined to unbounded utility func
tions and that common bounded utility functions have well-defined optimal threshold 
strategies .  

Utility functions and risk Assume that an individual has utility u(w) for wealth 
w > 0. Economists generally assume that rationality requires the utility function u to 
be strictly increasing and concave (u' > 0 and u" ::::: 0 assuming differentiability) .  Nor
mally, the utility function should be strictly concave to reflect a person's  diminishing 
preference for an additional dollar at increasing wealth levels. Economists also gener
ally postulate that a rational individual facing alternative risky prospects, or gambles, 
will choose to maximize expected utility. 

Beyond these general notions of rationality, economists have defined local measures 
of absolute risk aversion as 

-u" (w)ju' (w)  
and relative risk aversion as 

-wu" (w)ju' (w) .  
These measures follow naturally from Taylor approximations to  the so-called risk pre
mia associated with small random perturbations to wealth, either additive or propor
tional [4, 5, 6] . Given utility function u and wealth level w ,  the risk premium 7r as
sociated with an additive random wealth perturbation E is defined by the functional 
equation u (w - n )  = E(u (w + E) ) ,  where 7r is the premium that one is willing to pay 
to avoid the random wealth perturbation. We have 
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u (w - rr ) � u (w) - u' (w)n and u (w + E) �  u (w) + u' (w) E + u"(w)E2 /2. 

If E(E) = 0 and Var(E ) = a2 , then 

E (u (w + E))  � u (w) + u"(w)a2 j2 and hence 1r � ( - u"(w)ju' (w) )a2 j2, 

with units $ = ( 1 j$) x $2 . Relative risk aversion has a similar interpretation with re
spect to the proportional risk premium defined by the functional equation 

that is, 1r is the proportion of wealth one will pay to avoid a proportional wealth per
turbation E . In this case, we have dimensionless 1r � ( -wu"(w)ju' (w))a2 j2. 

Up to simple scaling, identically zero risk aversion, either absolute or relative, im
plies a linear utility function u ( w) = w .  Constant absolute risk aversion a > 0 implies 
a utility function of the form u ( w) = -e-aw , which is bounded above. Once again, 
scaling is unimportant and the utility function u (w) = 100( 1 - e-aw) , which takes 
positive values, is completely equivalent for our purposes. The higher the risk aversion 
parameter a ,  the less tolerance the individual has for additive wealth perturbation at 
any level of wealth. 

Up to simple scaling, constant positive relative risk aversion f3 > 0 implies a utility 
function of the form u (w) = w l-fi  for f3 E (0, 1 ) , u (w)  = ln(w) for f3 = 1 ,  or u (w) = 
-w ' -fi for f3 > 1 ,  where the latter function is bounded above. Once again, scaling is 
unimportant but we can ' t  avoid negative utility values for smal l levels of wealth when 
f3 :::: 1 .  The higher the risk aversion parameter {3 ,  the less tolerance the individual has 
for proportional wealth perturbation at any level of wealth . 

Someone with a l inear util ity function is entirely indifferent to ri sk in that doubling 
his fortune doubles his satisfaction, and of course he is subject to the two-box paradox. 
The other cases aren' t  so obvious and we deal with them in the next two sections .  
We don't claim that these constant risk aversion util ity functions are the only ones 
worth considering, although they have been much discussed. Some economists have 
suggested that absolute risk aversion should decrease with wealth while relative risk 
aversion should increase [5] . 

Two-box paradox and unbounded utility Denote initial wealth by w0 and the ob
served prize by x .  The two-box paradox arises when an individual prefers to trade, or 
gamble, without regard to his initial wealth position or the observed prize. In mathe
matical terms, a utility function u is subject to the paradox if 

or equivalently 

1 1 ( X )  2 u ( Wo + 2x) + 2 u w0 + 2 > u ( w0 + x)  

u (wo + 2x) - u (wo + x) > u (wo + x) - u (wo + xj2) 

for any w0, x > 0. 
For an individual subject to the paradox, the gain in satisfaction from doubling the 

observed prize (for instance, $ 10,000 to $20,000) always exceeds the loss in satisfac
tion from halving the observed prize (for instance, $ 10,000 to $5 ,000) , regardless of his 
initial wealth position. The following result shows that this condition is not confined 
to l inear utility. 

PROPOSITION 1 .  lf u (w) = wr for y E (0 , 1 ]  or u (w) = ln(w) , then the paradox 
occurs. 
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Proof For any Wo , x > 0, 

(wo + 2x) Y + (wo + xj2) Y Y Y ( t Y  + t-r ) 
2 - ( Wo + X) > ( Wo + X) 2 - 1 

305  

= (w0 + x) Y (t Y - 1 ) ( 1 - t -Y )j2 > 0, 

where t = (w0 + 2x) j (w0 + x) > (wo + x) j (wo + x/2) > 1 .  Moreover, 

ln(w0 + 2x) + ln(w0 + x/2) (jw& + Swox/2 + x2 ) 
-----------'-- - ln( w0 + x) = ln 2 wo + x  

> ln 
(jw& + 2w0x + x2 ) 

= O
. 

• wo + x  

We have just shown that conventional unbounded utility functions are subject to 
the paradox. We next show that the paradox occurs only for utility functions that are 
unbounded above. This result has already been proved [3] , but our proof avoids any 
reference to prior distributions. 

PROPOSITION 2. (B RAMS AND KILGOUR) A necessary condition for the paradox 
is that the utility function u be unbounded above. 

Proof Let an = u (wo + 2n+I ) - u (wo + 2n ) for n � 0, and let Sn = L�=O ak = 
u (w0 + 2n+ I ) - u (w0 + 1 ) . lf the paradox arises, then an is a positive, increasing se
quence so that sn t oo, and thus u is unbounded above. • 

We conclude that utility functions that are bounded above have at least the potential 
for simple threshold strategies for ceasing to trade in the two-box game. 

Bounded utility We now show that simple threshold strategies exist for two families 
of bounded utilities .  For the constant absolute risk aversion family, the prize threshold 
is independent of initial wealth. For the family of functions with constant relative risk 
aversion, the prize threshold is proportional to initial wealth. These results are not sur
prising. Constant absolute risk aversion implies the same sensitivity to additive wealth 
perturbation across the spectrum of existing wealth. Constant relative risk aversion, on 
the other hand, implies the same sensitivity to proportional wealth perturbation across 
the spectrum of existing wealth. Once again, the optimal prize thresholds are indepen
dent of utility function scaling. 

PROPOSITION 3 .  Let u (w) = -e-aw for some ot > 0, so that absolute risk aver
sion is constant and positive. Then the optimal threshold strategy in the two-box 
game is to trade when the observed prize x is less than x* = -2 ln(t9) /ot, where 
t9 = (.J5 - 1 ) /2, and not to trade when x � x*. The optimal threshold x* is indepen
dent of initial wealth w0• 

Proof For Wo , x > 0, 

1 1 1 
2 u (wo + 2x) + 2u (w0 + xj2) - u (w0 + x) = - 2e-a(wo+x/Z) f(t) , 

where t = e-ax/Z and f(t) = t 3 + 1 - 2t (graphed in FIGURE 1 ) . 
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Figure 1 The fu nction f(t) = t3 + 1 - 2 t 
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It i s  easy to check that f is strictly convex (f" > 0) on (0, I )  with f(O) = 1 ,  
f ( l ) = 0, f' (O) < 0, and J' ( l )  > 0 .  The relation 82 = I - e impl ies that f(O) = 0 
and we conclude that e is the unique zero of f in (0, 1 ) , with f(t) > 0 for t E (0, 8) 
and f(t ) < 0 for t E (8 , 1 ) .  S ince - ( l j2) e -a(wo+x l2l f(t) is positive if  and only if 
t > e ,  which is the same as x < x * ,  it follows that x* is the optimal threshold point, 
independent of w0. • 

PROPOS ITION 4 .  Let u (w) = -w-Y for some y > 0 so that relative risk aversion 
f3 = y + 1 is constant and greater than one. Then, the optimal threshold strategy in the 
two-box game is to trade when the observed prize x < x* = w0¢ / ( I  - ¢ ), where w0 
is initial wealth and ¢ is the unique root in (0, 1 ) of ( 1  + t ) -Y + ( 1  - t /2)-Y = 2, and 
not to trade when x :::: x* . The optimal threshold x* is proportional to initial wealth w0. 

Proof For wo , x > 0, 
1 1 1 
2u (wo + 2x) + 2u (wo + x/2) - u (wo + x)  = - 2 (wo + x) -y f (t ) , 

where this  time t = xj (w0 + x)  and f(t) = ( 1  + t )-Y  + ( 1 - t /2) -Y - 2 (graphed in 
FIGURE 2 for y = 1 ) . 

It is easy to check that f is strictly convex (f" > 0) on (0, 1 )  with f(O) = 0, 
f( l )  = 2-y + 2Y - 2 = (2Y - 1 ) ( 1 - 2-Y ) > 0, f' (O) < 0, and f'( l ) > 0. We con
clude that there exists a unique zero ¢ of f in (0, 1 ) with f (t) < 0 for t E (0, ¢) and 
f(t) > 0 for t E (¢ , 1 ) .  Since - ( 1 /2) (w0 + x)-Y f (t) is positive if and only if t < ¢, 
which is the same as x < x*, it follows that x* is the optimal threshold point and that 
it is proportional to w0 . • 

We remark that an extension of Proposition 4 is easily obtained for a utility func
tion of the form u (w) = - (ry + w)-Y where y > 0 and 17 > 0. The proof goes through 
the same way with optimal threshold x* = (ry + w0)¢j ( l - ¢) . This utility function, 
which falls into the category that Gallier [5] calls harmonic absolute risk aversion, ex
hibits decreasing absolute risk aversion (y + 1 ) / (rJ  + w) and increasing relative risk 
aversion (y + l )wj (ry + w) ,  although both types of risk aversion are reduced by in-
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elusion of the additional parameter. The following two examples illustrate further the 
distinct behavioral differences that are implied by the two families of utility functions 
in Propositions 3 and 4, constant absolute risk aversion and constant relative risk aver
sion. 

EXAMPLE 1 .  Suppose an individual has utility function u (w) = 1 00( 1 - e- .ooo i w ) , 
which exhibits constant absolute risk aversion with parameter a = .000 1 .  Then, he 
will trade if and only if the observed prize is less than $9, 624. 24, regardless of his ini
tial wealth. If this person observes a prize of $5,000, he will trade, no matter whether 
his existing wealth is $10 or $1, 000,000. If, on the other hand, he observes a prize of 
$10, 000, he will not trade under any circumstance. 

EXAMPLE 2 .  Suppose an individual has utility function u (w) = 1 00 - lOOOOw- 1 , 
which exhibits constant relative risk aversion with parameter f3 = 2. Then, he will 
trade if and only if the observed prize is less than his initial wealth since the root 
¢ = 1 /2. If this person observes a prize of $10, 000, he will trade if his existing wealth 
is less than $10, 000 but he will not trade if his existing wealth is $10, 000 or greater. 

In conclusion, we have demonstrated that the two-box paradox, like the St. Peters
burg paradox, can be resolved by bounded utility of wealth and that for traditional 
bounded utility functions, simple threshold strategies are optimal. 

REFERENCES 
1 .  R. A. Agnew, Inequalities with application in economic risk analysis, J. Applied Probability 9 ( 1972), 441-

444. 

2.  N. M. Blachman and D. M. Kilgour, Elusive optimality in the box problem, this MAGAZINE 74 (2001) ,  1 7 1-

1 8 1 .  

3 .  S .  J .  Brams and D.  M .  Kilgour, The box problem: to switch or not to switch, this MAGAZINE 68 ( 1995), 

27-34. 

4. G. L. Fonseca and L. J. Ussher, Choice under risk and uncertainty, The History of Economic Thought Website, 

Department of Economics of the New School for Social Research, http : I I cepa . newschool . edulhetl 
essaysluncertlchoicecont . htm. 



3 08 MATH EMATICS MAGAZI N E  

5 .  C .  Gallier, The Economics of Risk and Time, MIT Press, Cambridge, Mass . ,  200 1 .  

6 .  J .  W. Pratt, Risk aversion i n  the small and i n  the large, Econometrica 3 2  ( 1964), 122-136.  

A Conceptual Proof of Cramer's Rule 
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THEOREM . (CRAMER ' S  RULE) Let A be an invertible n x n matrix. Then the so
lutions x; to the system Ax = b are given by 

det(A; ) x · - ---' -
det(A) ' 

( 1 ) 

where A; is the matrix obtained from A by replacing the i th column of A by b. 

Proof The classical way to solve a linear equation system is by performing row 
operations : (i) add one row to another row, (ii ) multiply a row with a nonzero scalar 
and (ii i) exchange two rows. We show that the quotient in equation ( 1 ) will not change 
under row operations . 

Under the first row operation, the values of the two determinants det(A; ) and det(A) 
will not change, since determinants are invariant under this row operation. Under the 
second row operation both determinants will gain the same factor, which cancels in 
the quotient. Final ly, under the third row operation both determinants will switch sign, 
which again cancels in the quotient. 

Since every invertible matrix A can be row reduced to the identity matrix,  it is now 
enough to prove Cramer's  rule for the identity matrix .  However, this is a straightfor
ward task. • 

A Parent of Binet's Formula? 

B .  S U R Y 
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The famous Binet formula for the Fibonacci sequence F1 = 1 = F2 , Fn+2 = Fn + Fn+l 
is the identity 

where ¢ is the golden ratio ( 1 + .JS)/2. 
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As we all know, many identities-even quite complicated ones-once written 
down, can be verified by anybody who can perform elementary algebraic manipu
lations .  However, discovering it may not be easy at all . Binet's formula too can be 
verified easily. As for arriving at it, one method is to look for exponential solutions 
to the difference equation that defines the Fibonacci numbers . Here is another way 
to arrive at Binet' s formula by producing a polynomial identity that perhaps could be 
regarded as a parent of Binet's formula. 

Note first that the golden ratio ¢ satisfies the identities 

Let us look at the polynomial 

l ¢ + - = v's. ¢ 

It is an easy exercise in induction on n to show that 

Indeed, multiplying the identity for n = k by X + Y and subtracting from it the product 
of the identity for n = k - l by X Y, one obtains the identity for n = k + l .  

Therefore, on the one hand, we have 

On the other hand, from the identity xn+ I - yn+ l = (X - Y) :L7=o X ; yn-i , we obtain 

cpn+l _ (- 1 /¢)n+l 
¢ + 1 /¢ 

cpn+l _ (- 1 /¢)n+ l  
V5 

Since L;>o (n�i) satisfies the same recursion as the Fibonacci sequence and starts with 
F2 , F3 , it follows by induction that 

(n - i ) L . = Fn+ l  i::O:O l 

which is B inet' s formula. 

and one obtains 
cpn+l _ (- 1 /¢)n+l 

F + I - -------n - ¢ + 1 /¢ ' 

This note was submitted in the beginning of 2001 and when it was accepted in 
October 2003 , attention was drawn to two very enjoyable articles [1, 2] that appeared 
in the June 2003 issue. The authors studied a general Fibonacci-type of two-term linear 
recurrence :  

where a, b are any (even complex ! )  constants . If  we start with g 0  = 1 = g1 , then the 
analog of the formula 

""' n - 1  fn+l = � . 
ln/2J ( ') 
i=O l 
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as can b e  proved by induction. The corresponding Binet identity can b e  derived from 
the same polynomial identity above as follows .  Consider the numbers defined by 

Therefore, 

A + f.-L = a , Af-t = -b .  

Fn (A , t-L) = �(- 1) ; (n � i) (Af.-L) ; (A + t-Lt-z; 

Ln/2J ( ') n - l i n-2i = L . b a  = gn+ I · 
i=O l 

n . . An+ I  _ 1 1 n+ I  """' , 1 n-r �""" gn+ I  = � A f.-L = -----'---
i=O A - f.-L 

This is Binet's formula for these general Fibonacci sequences . 
It is fun to exploit the polynomial identity to derive some interesting identities in

volving binomial coefficients but the author would welcome a more natural motivation 
explaining the polynomial identity. Incidentally, one referee points out that B inet's for
mula appeared in De Morgan's notebooks before Binet was born. 

Acknowledgment. The author is indebted to the referees for bringing to his notice the two beautiful articles 

cited. 
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There are many examples in mathematics and other sciences in which a single equation 
(or a relatively small system of equations) is capable of capturing the essence and 
complexity of an entire field. For example, the equation defining the zeroes of the 
Riemann zeta function plays a central role in analytic number theory and related fields . 
Even a partial understanding of the solutions to this equation would provide keys to 
the answers to many far-reaching questions that are currently in the research focus of 
the mathematical community. In a somewhat opposite direction, several outstanding 
results from the theory of elliptic curves and modular forms,  crowning the efforts of 
several generations of mathematicians, were needed to tackle the single equation that is 
the subject of Fermat's  Last Theorem. While the equation we present in this note does 
not live up to the high standards set by these two examples, it still has the same flavor 
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in the sense that it touches on some very subtle questions and provides unexpected 
connections. 

The ideal functional equation we refer to in the title and solve in the sequel is given 
by 

f(xz - y)f (x )f (y) + 3f (O) = 1 + 2/ (0)f (O) + f(x )f (y) . ( I ) 

As it is, the equation looks far from ideal and its ring cannot be detected. In addition, it 
is not clear what it means to solve the given equation, so let us provide some context. 

For example, we may solve the ideal equation over JR., which means that we need to 
find all functions f : JR. ---+ JR. such that ( 1 ) is satisfied for all x , y, and z in R 

Note that the ideal equation is equivalent to the following system of equations :  

f(xz - y)f (x )f (y) = f(x )f (y) , 
f (O) = 1 .  

(2) 
(3) 

Indeed, it is obvious that (2) and (3) together imply the ideal equation. On the other 
hand, setting x = y = z = 0 in the ideal equation yields (f (O) - I?  = 0, which im
plies f (0) = 1 .  Once we know that f (0) = I the equation (2) easily follows from the 
ideal equation. 

Now we try to solve the system. Let f be a function that satisfies the equations (2) 
and (3) . 

Setting z = 1 and y = 0 in (2) yields f(x )f (x)  = f(x) . Thus, for all x , f (x) = I 
or f(x) = 0. Let S =  {x I f(x)  = 1 } . The function f is therefore given by 

f(x)  = { 1 ,  �f X E S 
0, If X tf- S, 

(4) 

that is, f is the characteristic function of the set S .  However, not any set S would do. 
First, we know that f (0) = I ,  which means 0 must be in S .  Further, set z = I in (2) . 
This gives 

f(x - y) f (x )f (y) = f(x )f (y) , 

which implies that if both x and y are in S then so must be x - y . Now set y = 0 
in (2) . This gives 

f(xz)f (x)  = f(x)  

and therefore i f  x is in S then so  must be  xz ,  for any z .  Thus, S has the following three 
properties :  

0 E S, 

X, y E S implies X - y E S ,  

x E S implies x z  E S,  for all z .  

(5) 

It is easy to see that the only two subsets S of JR. that satisfy the three conditions 
in (5) are JR. itself and {0} . The characteristic functions, given by (4) , of either S = JR.  
or S = {0} satisfy the system and therefore also our ideal equation ( I ) . 

As we see, the solutions of our ideal equation over JR. are not particularly exciting. 
In order to get spicier solutions we consider the ideal equation over the integers Z.  
To be  precise, this means that we  need to find all functions f : Z ---+ Z that satisfy 
the equation ( 1 ) for all x ,  y ,  and z in Z.  For example, in addition to the characteristic 
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functions of Z and {0} , the characteristic function of the set of even numbers 

f (x) = { b: if x is even 
if x is odd 

satisfies the ideal equation. Indeed, if at least one of x or y is not even then both sides 
of ( 1 ) are equal to 3. If both x and y are even then both sides of ( 1 ) are equal to 4. Simi
larly, we can check that the characteristic function of any set S = nZ = {nm I m E Z} 
that consists of all multiples of a fixed integer n satisfies the ideal equation. In fact, 
by following the exact same steps as we did above for JR., we conclude that any solu
tion to the ideal equation over Z must be the characteristic function of a subset S that 
satisfies the three conditions in (5) .  A subset of Z satisfies these conditions exactly 
when it consists of all multiples of a fixed integer n ,  that is, it is equal to nZ, for some 
integer n .  

The discussion so far might "ring" a bell . The conditions in (5) that describe the 
sets S providing the characteristic functions ( 4) that satisfy our "ideal" equation ( 1 ) 
are actually the conditions that define the notion of an ideal in a ring (for definitions of 
the terms ring and ideal see, for example, [1, pp. 1 94, 2 16]) .  It is easy to check that the 
relevant parts of our discussion remain valid for arbitrary integral domains [1, p. 200] . 
Thus, we make the following conclusion. 

Conclusion A function f : D ---+ D is a solution to the ideal equation ( 1) over an 
integral domain D exactly when it i s  the characteristic function, given by (4) , of an 
ideal S of D. 

The ideal structure in  integral domains is a very important and difficult question 
that lies in the heart of several mathematical areas such as commutative algebra and 
algebraic geometry. It is quite interesting that we could capture all ideals in a single 
functional equation. 

A few further modestly illuminating comments are in order. 
We now see why our ideal equation does not have particularly exciting solutions 

over R The reason is that JR. is a field [1, p. 204] and every field has only two ideals, 
namely, the field itself and the zero ideal {0} . 

If, instead of the ideal equation, we consider the more aesthetical ly appealing equa
tion (2) alone, we note that its only solutions over an integral domain D are the char
acteristic functions of the ideals of D and the constant zero function. The fact that the 
zero function is a solution to (2) could be thought of as a nuisance, since this function 
is the characteristic function of the empty set, which is not an ideal of D.  This is pre
cisely why our ideal equation ( 1) had to be slightly more messy and include the part 
that served as a filter for the zero function. 

Next, we note that we can use a similar functional equation to describe, say, the 
subrings [1, p. 1 96] of an integral domain D. One such equation is 

f(x - y) f(xy)f (x )  + 3f (O) = 1 + 2f (O)f (O) + f(x )f (y) . 

Once again, the messy part of the equation just serves to filter out the zero function 
and the interesting part is the equation 

f(x - y)f (xy)f (x)  = f(x )f (y) , 

which is satisfied by the characteristic functions of the subrings of the integral do
main D as well as by the zero function. 

If we do not insist on having a single equation describing the type of subsets we 
are interested in, and quite often there is no reason to do so, we can easily push our 
idea(l)s further. For example, the only solutions to the system of equations 
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f(O) = 1 ,  f ( l )  = 0, 
f (x - y)f (x )f (y) = f (x )f (y) , 

1 - f(xy) = ( 1 - f (x)) ( l - f (y)) , 

3 1 3 

over an integral domain D are the characteristic functions of the prime ideals of D [1, 
p. 200] . We recall that a prime ideal S in a ring R is an ideal, different from R,  that 
satisfies the condition 

x y E S implies x E S or y E S . 

In case, for aesthetic or some deeper reasons, we do insist on a single functional 
equation we may try the following. Assume that D is an integral domain for which 
there exists a polynomial p(x 1 ,  x2) with coefficients in D such that 

Then 

p (x 1 , p (x2 , x3 ) )  = 0 if and only if x 1  = x2 = x3 = 0, 

p (x 1 , p (x2 , p (x3 , x4) )) = 0  if and only if x 1 = x2 = x3 = x4 = 0, 

(6) 

and so on. Thus we can rewrite any system of n equations over D as a single equation 
over D. For example, the system 

/1 = 0, h = 0, f, = 0, 

could be rewritten as the single equation 

A polynomial p (x 1 ,  x2) with the property (6) exists in many cases . A precise descrip
tion of all such cases would lead us considerably deeper in the subject than we are 
willing to go at this moment. As an easy example, we note that such a polynomial 
over Z is p (x 1 , x2) = x� + xi .  Thus, we may write a single functional equation that 
describes all prime ideals of Z. Since the prime ideals of Z are the zero ideal {0} and 
the ideals of the form pZ = {pm I m E Z} , for p a prime number, such a functional 
equation, rather implicitly, describes the prime numbers . With the last observation, we 
just made a quick peek into number theory. 

Finally, we conclude our little interplay of ring theory, functional equations, and 
logic with an invitation to try to find functional equations leading to other types of 
subsets in integral domains and, more generally, to various substructures in other alge
braic settings. A particularly easy example is the case of Boolean algebras [1, p. 5 1 1 ] .  
If B i s  a Boolean algebra, the only functions f : B ----+ B that satisfy the equation 

f(O) /\ [f (x) =} f(i) ] /\ [ (f(x)  /\ f(y)) =} f(x /\ y) ]  = 1 ,  (7) 

for all x and y in B, are exactly the characteristic functions of the Boolean s�balgebras 
of B (an expression of the form A =} B used in (7) is just a shorthand for A v B) .  
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It is well known that some decimal expansions terminate, while others repeat, at 
least eventually, in patterns, which may be short or lengthy (we shall call this repeating 
pattern the period of the expansion) . Here we wil l  extend some known results while 
exploring expansions of fractions in any base. Our goal will be to find a formula for the 
length of the period of such expansions .  The interested reader is referred to the recent 
award-winning article by Jones and Pearce, who show how to display such decimal 
expansions graphically [3] . 

We will consider both the expansions of (the reciprocal s ot) primes and of com
posites .  It would seem that the easier part of this  problem would be that of primes .  
However, there are difficulties/anomalies among primes that make i t  hard to  find a for
mula that works in all cases . The most interesting such case is that of Wieferich primes, 
whose reciprocals are characterized by expansions whose periods are the same length 
as the periods of their squares .  For example, the length of the period of 1 I 1093 is 1092 
which is the same as that of I I 1 0932 • This, as we shall see, is not normally the case. 
For someone seeking a simple formula, this is bad news. However, as our table at the 
end shows, Wieferich primes are quite rare. 

Preliminaries Let's review what is meant by the expansion of a fraction and, in 
particular, the decimal expansion of a fraction. A few examples should suffice. In what 
follows,  a line over digits in a decimal expansion (or expansion in any base b) will 
denote that those digits repeat infinitely often in that expansion. 

1 13  = 0.3 
1 13 = 0.01 
119 = 0. 1 

-::-::--:::-:-::-:-119 = 0 .000 1 1 1  
1 127 = 0.037 

�������� 1 127 = 0.0000 1 00101 1 1 10 1 10 1  

(period 1 ,  base 1 0) 
(period 2, base 2) 
(period 1 ,  base 1 0) 
(period 6, base 2) 
(period 3 ,  base 10) 
(period 1 8 , base 2) 

We say that 0.3 = 0.333 · · · is the expansion for 1 13 in base 10 (decimal), that 
0 .01 = 0.0 10 10 1  · · · is the expansion for 1 13 in base 2, etc . The expansions in bases 
other than 10 can be obtained by long division after converting to the new base. 

PROPOSITION. The period of the expansion of I lx, in base b, is the smallest num
ber, say p, for which bP = 1 (mod x ) .  

That i s ,  the period is the smallest number p such that x I bP - 1 .  (This is basically 
Th . 4, section 15 from Dudley 's book [2] . )  

DEFINITION 1 .  By the period of a number, x, in base b, we shall mean the period 
of the expansion of 1 I x in base b. 
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When considering expansions, it will be our intention to concentrate on just the 
expansions of reciprocals of integers . This is sufficient since the length of the period 
of a fraction depends only on the denominator as long as the numerator is relatively 
prime to the denominator. To see this, consider the following in base ten: 

1 /7 = 0. 142857 
10/7 = 1 + 3/7 = 1 .42857 1 

100/7 = 14 + 2/7 = 14 .2857 14 
1000/7 = 142 + 6/7 = 142. 857 142 

10000/7 = 1428 + 4/7 = 1428 . 57 1428 
100000/7 = 14285 + 5/7 = 14285 . 7 14285 

Clearly then, the length of the expansion for any proper fraction with denominator 7 
is 6. Different numerators simply serve to change the starting digit of the period. For 
other bases b, we need only note that b = l Ob ;  that is, in base b, b is 10 .  Thus, for 
any given base, a reduced proper fraction with denominator x will have a period of the 
same length as 1 I x .  

Now consider the decimal expansions for 3 ,  6 ,  1 5 ,  and 30: 

1 /3 = 0.3 
1 /6 = 0. 16 

1 / 1 5  = 0.06 
1 /30 = 0.03 

These expansions suggest that factors of the base in the denominators do not af
fect the length of the period, but only delay its beginning . This is easily seen in the 
following example: 

1 /7 = 0. 142857 
1 /35 = 2/ ( 10 . 7) = . 028574 1 
1 / 14 = 5/ ( 10 . 7) = 0.07 14285 

Thus, when looking for the length of the period for an expansion it is enough to 
factor out all numbers from the denominator that divide the base, and determine the 
length of the period for the remaining number. 

Periods of composites It seems natural to ask about the periods of composites whose 
factors may or may not be repeated and whose factors include none of the factors of the 
base. Some of these questions have been answered, and it is our purpose to consider 
these questions and to provide some additional answers. 

First of all , it is well known that the expansion of a composite whose prime factors 
are not repeated and are not factors of the base has a period length that is just the 
lcm (least common multiple) of the periods of the individual factors [2] . For example, 
the period of 77 in base 10 is 6, since the period of 7 is 6, the period of 1 1  is 2, and 
lcm(6, 2) = 6. Similarly, the period of 34 1 = 1 1  · 3 1  is 30, since the period of 1 1  is 2 
and the period of 3 1  is 1 5 .  

The "lcm rule" makes such problems quite manageable.  I t  remains to consider pow
ers of single primes. A few examples would again be useful. In base 1 0, 

1 /7 = 0. 142857 
1 /72 = o.:::-o2=o=-=-4o=8::-::l-:c63=2:-:o6=53=o:-:c6-=-=12=2-:-44-:-::8'"""97=9o-=5=9:-::18=3-:;-:67=3:-:-46=9=3=87=7=5-=-=-51 
l j73 = 0 .0029 155 . . . 

(period 6) 
(period 42) 
(period 294) . 
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In base 2, 

1 /7 = 0.00 1 
1 /72 = o .-;;coo=o=o=o1;-;;0:-:-IO=o=1-::-cll;-;;o=o-:;-;I0=1-::-cll::-c:-1 
1 /73 = 0.000000001 . . .  

MATH EMATICS MAGAZI N E  

(period 3) 

(period 2 1 )  

(period 147) . 

Careful observation leads one to conjecture that the period for, say xn , when x 
is prime, is just the period of x multiplied by xn- l . The unfortunate difficulty with 
attempting to prove this power rule conjecture is that it is not true ! Counterexamples 
are abundant; just look at 1 /3 ,  1 /9, and 1 27 in base I 0. The periods for the expansions 
of these numbers are 1 ,  1, and 3, respectively. 

However, there is something special about 9 in base 10, which will eventually lead 
us to refine our conjecture. Actually, for any base b there is something special about 
the expansion of 1 / (b - 1 ) .  One can see this by considering the following geometric 
series in base b :  

I I I I 
-- = - + - + - + · · ·  b - I b b2 b3 

In "decimal point" notation for base b, the expansion for b - 1 is nothing more than 
. I l l  · · · . Because of this, any factor of b - 1 has a period of length I in base b. 

To illustrate, let  b - 1 be the product of, say, x and y (which are both less than 
b, and therefore are just "digits" in base b) , and consider the expansion in base b 
of I j x .  It is not too hard to see that it is nothing more than . yyy · · · . For example in 
base I I , I /2 = .555 · · · and I /5 = . 222 · · · . This may be verified by observing that 
1 /2 is nothing more than 1 /2 = 5/ 1 1 + 5/ 1 1 2  + 5/ 1 1 3  · · · . Likewise, 1 /5 = 2/ 1 1  + 
2/ 1 1 2 + 2 1 1 3 · · · .  

In base b = 1 0  the only factors of b - I are 3 and 9 .  Here, we note that 10 1 = 
I (mod 3)  and that 1 0 1 = I  (mod 32) .  

Period one primes For a particular base b ,  factors of b - I ,  which we call period 
one primes, provide counterexamples to our conjectured power rule formula. However, 
in any given base, period one primes will obviously be scarce so we simply eliminate 
all period one primes from consideration. In base I 0, 3 is easily verified as the only 
period one prime. Of course, base 2 has no period one primes.  

If we eliminate all period one primes and reconsider our conjecture, we are once 
again doomed-but for a different reason. As we shall see shortly, there are certain 
exceptions that occur, perhaps in all bases. So, what can we say with confidence? Well, 

it is certainly true, as we shall prove for any prime x and any base b, that bpx"- 1 = 
I (mod x11) ,  where p is the period of x in base b .  

Of course, this does not mean that pxn- l is actual ly the length of the period for the 

expansion of l jx" . It is well known [2] that the period of xn must divide bPx"- 1 - 1 ,  
but w e  do not know that pxn- l i s  the smallest such number. What might happen in this 
case? In our earlier efforts to prove the power rule, the difficulty always occurred at 
the same point. It seemed unlikely at first that some x2 might divide bP - I ,  where p 
is the period of x ,  since this would imply that the period of x2 is the same as the period 
of x .  This brings us to the Wieferich primes . 

Wieferich primes A Wieferich prime in base b is a prime number, x that satisfies 
the congruence 
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(In some discussions, the base b is limited to be 2 . )  Are they common? Do they exist in 
all bases? The answers to these questions are not all known. However, it is known [5] 
that Wieferich primes exist for many different bases, and we offer a table of Wieferich 
primes at the end of this Note. 

In base 2, for example, 1093 and 35 I I  are Wieferich primes .  This means that not 
only is 21092 = 1 (mod 1093) and 235 1 0  = 1 (mod 35 1 1 ) (which follows by Fermat's 
Little Theorm [2]) ,  but also that 21092 = I  (mod 1 0932) and 235 10 = 1 (mod 35 1 1 2 ) .  
Crandall, Dilcher, and Pomerance [1] showed in I 997 that the only base-2 Wieferich 
primes below 4 · 10 1 2 are 1093 and 35 1 1 .  

Actually, we will characterize Wieferich primes slightly differently. Of course, since 
x - I must be divisible by the period p, we change this definition to primes charac
terized by bP = I (mod x2) .  (In light of the upcoming corollary with mq = x - 1 
and n = 2, we see that the new definition is equivalent to the previous one . )  We note 
that if bP = I (mod xn ) where n is anything higher than 2, then it is also true that 
bP = I (mod x2) .  Thus, for our purposes, if bP = I (mod x3) then x is a Wieferich 
prime for base b. We shall also refer to Wieferich primes as "primes with square peri
ods" to emphasize the exceptional cases where the periods of the expansions for 1 I x 
are the same as the periods of the expansions for their squares, 1 I x2 • 

There are, of course, period one numbers with not only square periods, but cube 
periods and even higher. To see this, consider 9 1 = I (mod 2) , 9 1 = I (mod 22) ,  9 1 = 
1 (mod 23 ) .  Here the period for each of 2, 22 and 23 is 1 in base 9 .  Two better examples 
might be 3 1 0  = I  (mod 1 1 2) and 74 = 1 (mod 52) ,  where 3 1 0  = I  (mod I l ) and 74 = 
1 (mod 5) . It is thus apparent that if one is to compute, by way of some formula, the 
period for an expansion in any base, then those rare numbers with square periods must 
be considered and discounted. Indeed, we shall derive such a formula for the length of 
the period of a number whenever period one numbers and numbers with square periods 
are discarded. We will call this formula by the obvious name, the power rule . 

The power rule Before stating our main theorem we need the following lemmas and 
corollaries :  

LEMMA I . Suppose a i  = 1 (mod x) for each ai , i = 1 ,  . . .  , m, where m > 0. Then 
L ai = 0 (mod x)  if and only ifm = 0 (mod x) .  

The proof is left as  an  exercise for the reader. 

COROLLARY. Ifbmq = I (mod xn ) for n :::::_ 1 where q is a multiple of the period of 
x, but m is not a multiple ofx, then bq = I (mod xn ) .  

Proof To see this we  will rewrite (bmq - I )  as  (bq )m - I and write q as  dp where d 
is an integer. Then we factor bmq - 1 = bpmd - 1 as (bPd - I ) (bpd(m- I) + bpd(m-2) + 
. . .  + I ) =  (bq - I ) (bpd(m- 1 ) + bpd(m-2) + . · · + I ) .  Applying Lemma I to the second 
factor, which has m terms, each of which is congruent to I (mod x)  (since p is the 
period of x) ,  we see that xn must divide (bq - I )  so that bq = I (mod xn ) .  • 

LEMMA 2 .  lfx is an odd prime, k > I ,  and bpx Ck- Il = 1 (mod xk+ 1 ) where p is the 
period of x in base b, then bPx Ck-2) = I (mod xk) .  (Note that x is selected to be odd, 
since 2 is period one for all odd bases. Otherwise, 72 = I (mod 24) while 7 1 is not I 
(mod 23 ) would be an obvious exception.)  

Proof Since p is the period of x,  we have bP = I (mod x)  and we can write bP as 
(I  + nx) for some integer n. By the Binomial Theorem, 
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(k-2) k I k (2) (bPY = 1 + nx - (mod x ) .  
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But, by our hypothesis, bpx <k- 1 J = 1 (mod xk+1 ) .  This, along with ( I )  implies that x 1 n .  
The conclusion that bpx <k-2) = 1 (mod xk) then follows from (2) and the proof is com
plete. • 

The idea behind Lemma 2 is that under certain conditions factors of x can be can
celled from congruences. Now we are prepared to state and prove our main result: 

POWER RULE THEOREM . If x is an odd prime, N = x", n > I, and x is not a 
period one prime nor a Wieferich prime for base b, that is, not a prime with a square 
period, then the period of N is pxn- i  where p is the period of x. 

Proof We need to show two things :  

I .  x" I bf'X (n- 1 ) - 1 . 
II. If x" I bQ  - 1 ,  then Q ::= px"- 1 • 

I. This follows immediately from the binomial theorem since b" = I (mod x) .  

II . We must show for n ::= 2 that if x"  I bQ - I ,  then Q ::= px"- 1 for since we 
already know that it is true for n = 1 .  Assume not, that i s ,  assume Q < px"- 1 •  

Once again, we know that Q must be a multiple of p ,  the period of x ,  since 
x" I bQ - I implies x I bQ - I .  So let Q = mp. There are two cases to consider. 

First, let 's consider the case where m is a multiple of x .  We write m = rx1 

where I S: t < 11 - I and r i s  not a multiple of x ,  so that Q = r x1 p .  Here we have 
x" I b'' 1 " - 1 .  By the Corollary, we can cancel the r so that x" I bPx1 - I .  By Lemma 2, 

we can cancel one x from both sides of the expression to obtain x"- 1 1 b"'1- 1 - I .  This 
we may repeat unti l we have x"-1 I b" - I since under our assumptions n - t ::= 2. 
But thi s  means that x i s  a Wieferich prime contrary to our hypotheses, so we conclude 
that m is not a multiple of x .  

Second and finally, we consider what happens when m i s  not a multiple of x .  In this 
case we have x" I b1111' - I .  Once again using the Corol lary, we can cancel m so that 
x" I b" - 1 .  Since 11 ::= 2, we conclude that x must be a Wieferich prime, which once 
again violates our hypothesis .  This completes the proof of the Power Rule Theorem . 

• 

Conclusion Together with the lcm rule, the power rule provides a formula for the 
period of the expansion for the reciprocal of any composite-as long as no factors of 
the composite are to be excluded such as Wieferich primes or period one numbers . This 
formula may be evaluated easily as long as the periods for the individual prime factors 
are known. Predicting the periods for an arbitrary prime is, however, still elusive. A 
table of Wieferich primes is provided to demonstrate their scarcity in bases up to 25 
for numbers up to 2 1 8 •  (Period one numbers that qual ify as Wieferich primes, such as 
2 in base 9, have been removed from the table. )  Thi s  table contains two particularly 
interesting entries : 1 86 = 1 (mod 72) and 1 96 = 1 (mod 72) . The interesting part is 
that the following congruences are also valid : 1 86 = 1 (mod 73 ) and 1 96 = 1 (mod 73 ) .  
Thi s shows that there exist non period-one Wieferich primes with cube periods-in this 
case, for bases 1 8 and 19 .  For other bases this is still an open question [5] . Not quite 
so obvious from the table is the fact that 1 83 = 1 (mod 72) and 1 83 = 1 (mod 73 ) .  This 
answers, negatively, the question [5] whether Wieferich primes, x ,  must have periods 
of maximal length, that is, x - 1 .  Another such example is :  3 10 = 1 (mod 1 1 2) and 
35 = I (mod 1 1 2) . 
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TAB L E  1 :  Tab le  of Wiefer ich pr i mes up  to 2 1 8  for 
bases up  to 2 5 .  

base Wieferich primes base Wieferich primes 

2 1 093, 35 1 1  14 29, 353 
3 1 1  1 5  29 1 3 1  
4 1093,  35 1 1  1 6  1093, 35 1 1  
5 2077 1 , 40487 17  3 , 4602 1 , 48947 
6 66 1 6 1  1 8  5 ,  7 , 37, 33 1 , 33923 
7 5 1 9  7,  1 3 ,  4 3 ,  1 37 
8 3, 1093,  35 1 1  20 28 1 , 46457 
9 1 1  2 1  None 

1 0  487 22 1 3 , 673 
1 1  7 1  23 1 3  
1 2  2693, 1 23653 24 5 , 25633 
1 3  863 25 2077 1 , 40487 

Open Questions To repeat, it is known that Wieferich primes satisfying the congru
ence, bP = 1 (mod x2) ,  exist and are rare, but it is not known if any Wieferich primes, 
other than period one primes, satisfy the congruence bP = 1 (mod xn ) ,  n > 2 except 
for bases 1 8  and 19 .  Also, it is not known if there are Wieferich primes for each base; 
or even if the set of such primes is infinite (discounting period one primes, once again). 

CONJECTURE . Wieferich primes exist for all bases and, furthermore, the following 
relationship holds in any base, b, for infinitely many primes, x ,  and for any value of n :  
bx- 1 = 1 (mod xn ) .  

Acknowledgment. The authors would like to express their appreciation to the reviewers for many suggestions 

and improvements . 
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Proposa l s  
To be considered for publication, solutions should be received by March 1 ,  2005. 
1701. Proposed by Murray S. Klamkin, University of Alberta, Edmunton, AB. 

Prove that for all positive real numbers a , b ,  c ,  d, 

1702. Proposed by Roy Barbara, American University o{Beirut, Beirut, Lebanon. 

Let R be the circumradius of nondegenerate triangle ABC. For point P on or inside 
of triangle ABC, let S (P ) = I PA I  + IPB I  + IPCI . Find the maximum value of k and 
the minimum value of K such that kR ::=: S (P )  ::=: K R for al l acute triangles ABC. 

1703. Proposed by Shahin Amrahov, ARI College, Ankara, Turkey. 

Let p (x) = ax3 + bx2 + ex + d where a ,  b ,  c, d are integers with a = c = 
2 (mod 3)  and b = 0 (mod 3 ) .  Prove that for any positive integer n there is an in
teger k such that p (k) is a multiple of 3n . 

1704. Proposed by Mowaf{aq Hajja, Yarmouk University, lrbid, Jordan. 

Let F be the Fermat-Torricelli point for triangle ABC. Let the cevian from B 
through F meet AC in B* and the cevian from C through F meet AB in C* .  Prove 
that if BB* = CC* ,  then triangle ABC is isosceles. (The Fermat-Torricelli point F 
of triangle ABC is the point for which the sum of the distances from the vertices is 
minimum.) 

We invite readers to  submit problems believed to  be  new and appealing to  students and teachers of  advanced 

undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any bibliographical 

information that will assist the editors and referees. A problem submitted as a Quickie should have an unexpected, 

succinct solution. 

Solutions should be written in a style appropriate for this MAGAZIN E .  Each solution should begin on a 

separate sheet. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 

Mathematics, Iowa State University, Ames IA 500 1 1 ,  or mailed electronically (ideally as a IbTpi: file) to 

ehjohnst@iastate.edu. All communications should include the readers name, full address, and an e-mail address 

and/or FAX number. 
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1705. Proposed by Michel Bataille, Rouen, France. 

Let n be a positive integer. Find the minimum value of 

(a _ b)2n+ 1 + (b _ c)2n+ l + (c _ a)2n+ 1 

(a - b) (b - c) (c - a) 

for distinct real numbers a ,  b ,  c with be + ca :=:: 1 + ab + c2 . 

Q u i ck ies 
Answers to the Quickies are on page 326. 
Q943. Proposed by Michael Botsko, Saint Vincent College, Latrobe, PA. 

32 1 

Let (X, d) be a compact metric space and let f : X ----+ X be an onto function. 
Suppose that d(f(x) , f (y)) > d(x , y) whenever x "/= y . Prove that f has a unique 
fixed point. 

Q944. Proposed by Michel Bataille, Rouen, France. 

Show that for positive integer n ,  

t<-ok (n) (2n - k) = 1 . 
k=O k n 

So l ut i ons  
In Crowded Circles October 2003 

1677. Proposed by Mowaffaq Hajja, Yarmouk University, Irbid, Jordan. 

Let triangle ABC be inscribed in circle C. Let A* be the point on C that bisects the 
arc BC that contains A .  Let B* and C* be defined in a similar way. 

(a) Prove that A* B* is parallel to C*C,  B*C* is parallel to A* A, and C* A* is par
allel to B* B .  

(b) The points A ,  B ,  C ,  A * ,  B * ,  C *  partition C into six arcs .  The length of the short
est of these can be taken as a measure of the "crowdedness" of the six points. How 
should A ,  B ,  C be chosen so the points A ,  B ,  C, A* ,  B * ,  C* are least crowded? 

Solution by Mike Hitchman, Albertson College, Caldwell, /D. 

We assume that MBC is scalene. Without loss of generality we may also assume 
that C is the unit circle, that A = ( 1 , 0) , and that AB < BC and AB < CA. By possibly 
reflecting about the x-axis and about the perpendicular bisector of AB, we may assume 
that B = (cos {3 ,  sin {3) = cis f3 with 0 :=:: f3 < 

2; and that C = cis y where 2{3 < y < 

� + JT .  We then have 

A* = cis ( JT + f3 ; y ) , B* . 
y 

= CIS 2 '  and C* = cis ( JT + �) . 
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I n  counterclockwise order around C ,  the six points are i n  order A ,  B ,  B * ,  C ,  C* , A * .  
For the remainder of the solution, arc (PQ) will denote the arc o n  the circle that runs 
counterclockwise from P to Q .  

(a) The midpoint of arc (CC*) is 

. (n + y + f312 ) 
CIS 

2 
. 

This is also the midpoint of arc (A * B* ) .  Because the midpoints of the arcs coincide, 
it follows that A* B* is parallel to C C* . A similar argument establishes the other two 
cases . 

(b) We show that the six points are least crowded when A = l = cis (O) , B = 
cis (2n /9) , and C = cis(8n /9) . The measures of the six arcs are 

arc(AB) = {3 ,  arc(BB* ) = � - {3 , arc (B* C) = � '  f3 
arc (CC* ) = n + 2 - y, 

arc (C* A*) = �
' 

and arc (A*A) = n - y + f3 . 
2 

In addition, we have the following arc length relationships ,  

( I )  arc (AB) + arc (BB*) + arc(B*C) + arc ( CC*) + arc ( C* A*) + arc (A *A) = 2n 
(2) arc (A*  A ) = arc (BB*) + arc (CC*) 

(3) arc (B*C)  = arc (C* A * ) = arc (AB) + arc (BB* ) .  

Equations (2) and (3 )  ensure that arc (A *A) , arc (B*C) ,  and arc(C* A * )  al l have measure 
greater than the measure of arc (BB*) .  In addition, by substituting from (2) and (3) into 
( I )  we find 

3 arc(AB) + 4 arc(BB*) + 2 arc ( CC*) = 2n . 
It follows that the six points are least crowded when these three arcs al l have the 
same measure, namely, 2n j9.  In particular, this is the case when arc (AB) = 2n /9, 
arc (BC) = arc(BB*) + arc(B*C)  = arc(AB) + 2 arc (BB* ) = 2nj3 ,  and arc(CA) = 
1 On /9, so MBC has angles of n /9, n /3 ,  and 5n /9. 

Note. If 6ABC is not scalene, then at least one of the point pairs X , X* will coincide. 
Part (a) still holds provided the segment XX* i s  not degenerate. 

Also solved by Herb Bailey, Roy Barbara (Lebanon), Michel Bataille (France), Daniele Donini (Italy), 
Michael Golf?enberf? and Mark Kaplan, David Gove, Peter J. Gressis, Enkel Hysnelaj (Australia), Victor Y 
Kutsenok, Li Zhou, and the proposer. There were six incorrect or incomplete submissions. 

The Ladder and the Box October 2003 

1678. Proposed by Kent Holing, Statoil Research Center, Trondheim, Norway. 
Let P [h , w ,  l] denote the following problem: A box of height h and width w is 

placed on the floor so it is flush with a wall and the sides of length w are perpendicular 
to the wall. A ladder of length l leans against the wall and just touches the box along 
the upper edge. Let x be the length of the portion of the ladder that is between the wall 
and the point of contact with the box. 

(a) Characterize all ordered triples (h ,  w ,  l) of positive integers such that the prob
lem P [h , w ,  l] has at least one integral solution for x .  
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(b) Characterize all ordered triples (h ,  w ,  l )  of positive integers such that the prob
lem P [h , w ,  l] has exactly one solution for x , and that solution is integral. 

Solution by Knut Dale, Telemark University College, B¢, Norway. 
If the ladder touches the floor, the wall , and the box at one point, and makes angle 

8 E (0, JT /2) with the floor, then 

h w l = - + -- . 
sin e cos e 

As e increases from 0 to ;r /2, the value of l decreases from oo to a minimum l = 10 
characterized by !�13 = h213 + w213 (when tan3 e = hjw) then increases to 00. If 
l > !0 , then there are two positions in which the ladder touches the box, and each 
leads to a solution for x .  If l = !0 then there is just one position in which the ladder 
touches the box and just one solution for x .  If l < !0 then there are no solutions. 

(a) First assume that l :=: !0 . We show that P [h ,  w, l ] has at least one positive inte
ger solution if and only if (h ,  w ,  l) = (ar, f3s ,  (a + f3)t ) ,  where (r, s, t) is a primitive 
Pythagorean triple and a , f3 are positive integers. 

Assume the problem has an integer solution x , and let a and b be, respectively, the 
distances from the top and the foot of the ladder to the box. By similar triangles 

h b l - x  
a w X 

If h ,  w ,  l ,  x E N, then a ,  b E  Q+ . Because a2 = x2 - w2 and b2 = (l - x)2 - h2 , it 
follows that a ,  b E N. Hence (h ,  b, l - x) and (a , w ,  x) are both Pythagorean triples 
and are associated with similar triangles. Thus there are a primitive Pythagorean triple 
(r, s ,  t) and a , f3 E N  with (h , b, l - x) = a (r, s ,  t) and (a ,  w ,  x) = f3 (r, s ,  t) . Then 
(h ,  w ,  l) = (ar, f3s ,  (a + f3) t) and one solution to the problem P [h ,  w ,  l] is the pos
itive integer x = f3t .  Conversely, given such a representation for (h ,  w, l) , there is at 
least one integer solution for x , namely x = f3t .  

(b) The problem has exactly one solution x if and only if l = !0 . We show that 
in this case, h ,  w and l = !0 are all positive integers if and only if (h ,  w ,  l) = 
(y r3 , ys3 , y t3 ) where (r, s ,  t) is a primitive Pythagorean triple and y E N. For such 
(h ,  w ,  l) , x = y s2 t and is integral. 

Suppose that [213 = h213 + w213 for some h ,  w ,  l E N. Rewrite the equation in the 
form h = (hl2 ) 1 13 - (hw2) 1 13 . Set (h/2) 1 13 = y + h/2 and (hw2) 1 13 = y - h/2 . Then 
hl2 - hw2 = 3hy2 + ih3 , showing that y2 E Q, and from hl2 + hw2 = y (2y2 + �h2) 
we find y E Q. Hence, hl2 = p3 and, by symmetry, wl2 = q3 for some p ,  q E Q, 
and it then follows that p, q E N. Let d = GCD(p , q) , so p = dr and q = ds with 
(r, s ) = 1 . We then find hs3 = wr3 , so h = y r3 and w = ys 3 for some y E N. Finally, 
because l2 = y 2 (r2 + s2) 3 , we conclude that l = y t2 with r2 + s2 = t2 . This shows 
that (h ,  w ,  l) has the desired form. Conversely, if (h ,  w ,  l) has this form, then !213 = 
h213 + w213 so there is exactly one solution and the solution, x = y s2t = w2!3t 1 13 , is 
integral. 

Also solved by Roy Barbara (Lebanon), Michel Bataille (France), John Christopher, Con Amore Problem 
Group (Denmark), Chip Curtis, Martin Levin, H. T. Tang, Li Zhou, and the proposer. There were four incomplete 
or incorrect submissions. 

Fibonacci Power October 2003 

1679. Proposed by Jose Luis Dfaz-Barrero and Juan Jose Egozcue, Universitat 
Politecnica de Catalunya, Barcelona, Spain. 
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Let fk denote the kth Fibonacci number, that is ,  fo = 0, !1 = 1 ,  and fk+z = fk+1 + 

!k . k :=:: 0. Prove that for any positive integer n ,  

Solution by G.R.A.20 Problems Group, Rome, Italy. 
Using the identities 

and the fact that - In x is convex, 

2" � I t  G) ln (f,) " In ( 2" � I t GH 
( fzn ) ( I � (n) 1 ) = In  � = - In - L.- fk -

2 1 fzn k= l  k fk 

� � t (�) !k (- In (�) ) = -1 t (�) !k ln(fk) . /:._11 k= l fk fzn k= l 

This is equivalent to the inequal ity in the problem statement. 

A lso solved by Michel Bataille (France), Minh Can, Daniele Donini, Ovidiu Furdui, Enkel Hysnelaj (Aus
tralia), Hein�-Jur�en Seiffert (Germany), Achilleas Sinefakapoulos, Ricardo M. Torre jon, Li Zhou, and the pro
poser. There were two incorrect submissions. 

Symmetric Extremes October 2003 

1680. Proposed by H. A. Shah Ali, Tehran, Iran. 
For positive integers k and n, with k � n, define the kth elementary symmetric 

function Sk ,n of the n numbers X 1 ,  Xz , . . .  , X11 by 

Sk , n = Sk , ll (X J , . . . , Xn ) = 

Let c E (0, 1 ]  be given and assume that x; :=:: 0 for 1 � i � n ,  and that I:Z= 1 Sk,n = c. 
Find the minimum and maximum values of Sk ,n for each 1 � k � n, and determine 
necessary and sufficient conditions for the extrema to occur. 

Solution by Li Zhou, Polk Community College, Winter Haven, FL. 
For 1 � k � n ,  let mk,n and Mk,n be, respectively, the minimum and maximum 

values of Sk,n · We first observe that m 1 , 1 = c = Mu with x 1  = c. For the remainder 
of the solution we assume that n :=:: 2. 

The key to our solution is the replacement of pairs (x; ,  x j ) , i i= j ,  by (y ,  0) or (z , z) 
where l + y = ( 1 + x; ) ( 1 + xj ) and 1 + z = .j(l + x; ) ( l + xj ) . Because 

n n 
1 + L sk,n = rr ( 1 + X; ) ' 

k= l i= l 
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these replacements do not change the value of L�=J Sk,n · Observe also that 

y = x; + xj + x;xj :=:: x; + xj ,  

with equality if and only if at least one of x; , Xj is 0. Also, 2z + z2 = x; + Xj + x;xj 
and, by the arithmetic-geometric mean inequality, 

Hence 

( 1 + X ' )  + ( 1  + X · ) X ' + X · 1 + < l 1 = 1 + -'--1 . z _ 2 2 

and z2 > x · x · - l } '  

with equality if and only if x; = x j .  Applying these replacements and observations it 
is immediately evident that 

• M1 ,n = c, which is achieved if and only if one of the x; s is c and all others are 0. 
• m1 ,n = n (-\11 + c - 1 ) , which is achieved if and only if x1 = x2 = · · · = Xn = 

-\11 + c - 1 .  
• M2,2 = (JT+C - 1 ) 2 , which is achieved if and only if x 1  = x2 = JT+C - 1 .  

For 2 ::::: k ::::: n ,  it is evident that mk,n = 0, which is achieved if and only if at least 
n - k + 1 of the x; s are 0. 

It remains only to determine Mk,n for n :=:: 3 and k :=:: 2. We may assume that at least 
k of the x; s are nonzero. Then Sk,n > 0, so 

n n 
1 + c = fl ( 1 + x; ) > 1 + L X; ,  

i= ]  i= l 

n 
that is, L x; < c ::::: 1 .  

i= l  

Now taking, say, i = 1 ,  j = 2 in our earlier discussions, 

Sk,n (Z , Z , X3 , . . .  , Xn ) - Sk,n (X J , Xz , X3 , . . .  , Xn ) 

where 

= (z2 - XJXz ) Sk-2,n-z (X3 , . . .  , Xn ) + (2z - XJ - Xz)Sk- J , n-z (X3 , . . .  , Xn ) 

= (z2 - XJXz )D ,  

D = sk-2,n-z (X3 , . . .  ' Xn ) - sk- J ,n-2 (X3 , . . .  ' Xn ) 

::: ( 1 - t x;) Sk-2,n-z (X3 , . . .  , Xn ) > 0. 
•= I 

(We define So,n = 1 for n :=:: 1 .) Applying this argument repeatedly to other (x; , x j )  
pairs, and using the earlier observation that z2 - X;Xj :=:: 0 ,  we find that Mk,n = 
(�) ( -\11 + c - l )k for 2 ::::: k ::::: n and that this is achieved if and only if x 1 = x2 = 
· · · = Xn = -\11 + C - 1 .  

Also solved by Chip Curtis, Daniele Donini (Italy), and the proposer. 
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A Functional Inequality October 2003 

1666. Proposed by Razvan A. Satnoianu, City University, London, England. 
Let f, g : [0, oo) --+ [0, oo) be functions with f increasing, g entire, and g<nl (0) :::>: 

0 for all nonnegative integers n .  Prove that if x :::>: y :::>: z :::>: 0 (or y :::>: z :::>: x :::>: 0 or 
z :::>: x :::>: y :::>: 0), then 

f(x) (g (x) - g (y) ) (x - z) + f(y) (g (y) - g (z) ) (y - x) 

+ f(z) (g (z) - g (x)) (z - y) :::>: 0.  

Solution by Daniele Donini, Bertinoro, Italy. 
More generally, we prove the inequality for functions f, g : [0, oo) --+ [0 , oo) 

with f nondecreasing and g nondecreasing and convex . Let x :::>: y :::>: z :::>: 0. If either 
x = y or y = z, then the inequality follows easily, so we assume that x > y > z :::>: 0. 
By the convexity of g we have 

g (x) - g (y) g (y) - g (z) �--��- > �--��-
x - y  y - z  

Because both f and g are nonnegative and nondecreasing, it follows that 

(g (x) - g (y) ) (x - z) :::>: (g (x) - g (y)) (y - z) :::>: (g (y) - g (z) ) (x - y) :::>: 0, 

and 

Hence 

f(x) (g (x ) - g (y ) ) (x - z) :::>: f(y) (g (x) - g (y) ) (x - z) 
:::>: f (y) (g (y ) - g (z ) ) (x - y) . 

f (x ) (g (x ) - g (y ) ) (x - z) - f (y) (g (y) - g (z) ) (x - y) :::>: 0. 

The desired inequality now fol lows by adding thi s  last resu lt and 

f(z) (g (z) - g (x) ) (z - y) :::>: 0. 

For y :::>: z :::>: x :::>: 0 or z :::>: x :::>: y :::>: 0 the inequality follows by in variance under cyclic 
permutations of x ,  y , z .  
Note. This problem was first published in  the February 2003 issue of  the MAGAZINE. 
However the condition on the variables was incorrectly given as x, y , z :::>: 0 instead of 
x :::>: y :::>: z :::>: 0. The following readers submitted counterexamples to the incorrect ver
sion: Daniele Donini (Italy) ,  Julien Grivaux (France) , Northwestern University Math 
Problem Solving Group, Rolf Richberg (Germany),  and Li Zhou . One such example 
was f (t) = t ,  g (t) = t2 with x = 0, y = 4, and z = 5 . 

Also solved by Michel Bataille (France), Knut Dale (Norway), Ovidiu Furdui, Elias Lampakis (Greece), 
Northwestern University Math Problem Solving Group, Jawad Sadek, Li Zhou, and the proposer. 

Answers 
Solutions to the Quickies from page 32 1 .  
A943. Because d(f (x) ,  f (y)) > d(x ,  y) for x =j:. y ,  the function f is one to one 
and thus has an inverse. Let g denote the inverse of f. If x =j:. y, then d (x ,  y) = 
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d(f(g (x) ) ,  f (g (y)) )  > d(g(x ) ,  g (y) ) ,  s o  g i s  continuous on X .  Let h (x) = d(x ,  g (x)) . 
Then h is a continuous real valued function on X .  Because (X, d) is compact, there is 
an x0 E X at which h assumes its minimum value. We claim that g (x0) = x0 . Suppose 
not, and let Yo = g (xo) . Because xo =/= Yo we have d (g (xo) , g (yo)) < d (xo , Yo) . But 
this can be rewritten as d(y0 , g (y0) )  < d (x0 , g (x0) ) ,  which contradicts the minimality 
of h (xo) . Thus, g (xo) = xo and xo = f (g (xo) )  = f (xo) . Because d (f (x) , f (y)) > 
d (x , y) when x =/= y ,  it is clear that f cannot have more than one fixed point. 

A944. Let Sn denote the given sum. Then 

� n-k ( n ) (n + k) � Sn = �(- 1 )  _ 
= � an-kbk , 

k=O n k n k=O 

where ak = ( - 1  )k (�) and bk = (n;k) . Now 

and 

for ix I < 1 .  Thus 

The result follows .  

t akxk = t (- 1 )kG)xk = o _ xr 

b x - x - ----:-Loo k Loo (n + k) k 1 

k=O 
k - k=O n - ( 1 - x)n+ l

, 

New Ed i tor- E l ect for the MAGAZ I N E  
We are pleased to announce that the Board of Governors of the MAA has con
firmed Allen Schwenk to serve as Editor-Elect of the MAGAZINE starting in Jan
uary 2005 . As of that date, new manuscripts should be sent to the Editor-Elect 
rather than the Editor. Details will be forthcoming in our December issue. 

Schwenk is Professor of Mathematics at Western Michigan University. Michi
gan residents should be on the watch for MATHMAG license plates, which are 
rumored to be forthcoming. His term as Editor will be from 2006 to 201 1 .  



R E V I E W S  

PAU L j .  CAM PBELL, Editor 
Belo it College 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Boutin, Chad, Purdue mathematician claims proof for Riemann hypothesis, Purdue News 
(8 June 2004), ht tp : / /news . uns . purdue . edu/UNS/html4ever/2004/ 040608 . DeBrange s .  

Ri emann . html . Hogan, Jenny, Mathematicians sceptical over claimed breakthrough, New Sci
entist ( I I June 2004), ht tp : I /www . news c i ent i st . c om/news /news . j sp? id=ns99995 104 . de 
Branges de Bourcia, Louis,  Apology for the proof of the Riemann hypothesis, and Riemann 
zeta functions, both avai lable at http : I /www . math . purdue . edu; -brange s /  . Conrey, J.B . ,  
and Xian-J i n  Li .  A note o n  some positivity conditions related t o  zeta and L-functions . Interna
tional Mathematics Research Notices 2000 ( 1 8) 929-940 ht tp : / / arx i v . org/ ab s /math . NT/ 

98 1 2 1 66 . 

Louis de Branges de Bourcia (Purdue) has announced a proof of the Riemann hypothesis,  one 
of the Clay Foundation's M i l lennium Million-Do l l ar Prize Problems, following a research pro
gram that he announced in 1 986. However, Conrey and Li " i ndicate the difficulty of approach
ing the Riemann hypothesis by using de Branges '  positivity conditions," a result that suggests 
that de Branges 's  approach can ' t  work . (Of course, unless there ' s  an easy proof that everybody 
missed, any approach w i l l  be difficu lt.) Nevertheless, in 1 985 de Branges proved the B ieberbach 
conjecture, a famous unsolved problem open s i nce 1 9 1 6, about coefficients of power series of 
conformal maps of the unit disk.  

Weisstein, Eric W. , Twi n  prime proof proffered, MathWorld Headline News (9 June 2004) 
ht tp : I /mathworld . wolfram . c om/news /2004 - 0 6 - 09/twinpr ime s /  . Arenstorf, R . F. ,  There 
are infinitely many pri me twins (26 May 2004) ht tp : I / arX i v . org/abs /math . NT/0405509 . 

Tenenbaum, G . ,  Re: Arenstorf's paper on the twin prime conjecture, ht tp : I / l i s t s erv . nodak . 

edu/ scr ipt s /wa . exe?A2= ind040 6&L=nmbrthry&F=&S=&P= 1 1 1 9 . 

"In spring, a young man's  fancy turns to"-announcing proofs of famous conjectures, perhaps. 
In May, R.F. Arenstorf (Vanderbilt  University) issued a purported proof of the twin prime con
jecture, via methods from analytic number theory, including a Tauberian theorem; but G. Tenen
baum (lnstitut Elie Cartan) quickly found a gap. 

Cipra, Barry, Proof promises progress in prime progressions, Science 304 (2004) 1 095 . Pe
terson, Ivars, Progressive primes, ht tp : / /www . maa . org/mathl and/matht r ek_04_26_04 . 

html (26 April 2004) . Green, B . ,  and T. Tao, The primes contain arbitrarily long arithmetic 
progressions, ht tp : I / arxiv . org/abs /math . NT/ 0404 1 8 8 . 

Ben Green (Pacific Institute of the Mathematical Sciences, Vancouver) and Terence Tao 
(UCLA) have offered a proof that there are arbitrarily long arithmetic progressions of primes. 
Their work, like that of de Branges and of Arenstorf, faces scrutiny before we will know 
if their (nonconstructive) approach has settled the question . (C ipra's title wins the headline 
writers ' alliteration contest, though I might have gone with "Profs produce purported proof of 
prime progressions." In any case, I am running out of different ways to announce these proof 
profferings . . . .  ) 
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Collins, Graham P. , The shapes o f  space, Scientific American 29 1 ( 1 )  (July 2004) 94- 1 03 .  

I n  2002 and 2003 , Grigori Perelman (Steklov Institute) posted papers that-except for a mi
nor step yet to be proved-would settle the Poincare conjecture in the positive. His work is at a 
"more mature" stage of investigation by other mathematicians, who so far have "no real doubts" 
about it. This popular article, full of illustrations, will reintroduce readers to the lure of topol
ogy; it even mentions in passing "curious connections" to the physics of of electromagnetic 
interactions, to general relativity, and to string theory. 

Klarreich, Erica, Theorems for sale : An online auctioneer offers math amateurs a backdoor 
to prestige, Science News 1 65 ( 1 2  June 2004) 376-377.  Monastersky, Richard, Thumbing 
his nose at academe, a scholar tries to auction his services, Chronicle of Higher Education 
(28 May 2004), ht tp : I I chroni c l e . c om/ f r e e / v 5 0 / i 3 8 / 3 8 a0 1 5 0 1 . htm . Tozier, William, 
Decrease your Erdos number to 5 !  Scientific researcher for hire. ht tp : I I cgi . ebay . com/ 

w s / eBay i S AP I . dll ?Viewit em&i t em= 3 1 89039958 ; Notional slurry [Tozier's  blog about the 
auction] , ht tp : I /wi l l i am tozier . c om/ s lurry I comment / s o c i al /  erdo s 6 . html . Grossman, 
Jerry, et al . ,  The Erdos number proj ect. http : I /www . o akland . edu/ enp/ . 

Your Erdos number is your degree of separation from the late Paul Erdos in the graph connect
ing mathematicians who have written joint research papers (technically, the distance in edges of 
the shortest path from you to Erdos in the mathematics research collaboration graph) . William 
Tozier, a scientist with Erdos number 4, "just for fun" recently auctioned on the Internet mar
ket eBay 40 hours of his time for collaboration on a j oint research paper. At least 1 00 people 
showed interest, but the winning bidder (at $ 1 ,03 1 )  was a saboteur: Jose Burillo (Polytechnic 
University of Barcelona), who already has an Erdos number of 3, refuses to pay up or to collab
orate with Tozier and bid just to stop the "travesty." Tozier has been inspired by the responses 
to try to create a "collaborative community of amateur mathematicians ." (More than 1 60,000 
mathematicians have an Erdos number of 5 or less. Maybe you do, but I don't,  so all this empha
sis on Erdos numbers makes me feel a bit left out, especially since the Combined Membership 
List of the American Mathematical Society and other societies (including the Mathematical As
sociation of America) has only 52,000 names. But if it were important for me to have an even 
lower Erdos number than Tozier's ,  I could approach my colleague in the next office, who can be 
neither blandished nor bribed; but I doubt that I could rise to a high enough fraction of his level 
of talent to merit co-authorship.) Meanwhile, Erdos's  death in 1 996 has only slowed his output 
of 1 ,500 publications ; he continues through mathematicians finally writing up joint work that 
they did with him a decade or so ago . 

Bartlett, Albert A . ,  et al . ,  The Essential Exponential! For the Future of Our Planet, Center for 
Science, Mathematics & Computer Education, University of Nebraska-Lincoln, 2004; 29 1 pp, 
$25 (P) ; 4 or more copies to the same address, $ 1 2.50 each, postpaid. ISBN 0-9758973-0-6. 
Case, James, Meeting the world's energy needs, SIAM News 31 (5) (June 2004) 4, 9 .  

"The greatest shortcoming of the human race is our inability to understand the exponential func
tion." This is the opening line of a talk that Al B artlett (retired professor of physics, University 
of Colorado, and former president of the American Association of Physics Teachers) has been 
giving for 35 years (1 ,500 times ! ) .  This book reprints articles of his on the energy crisis, pop
ulation, resources, the arithmetic of growth, and the exponential function, together with a few 
related articles by others, including M. King Hubbert. Hubbert is famous for his prediction in 
the 1 950s that U.S .  oil production follows a Gaussian distribution and would peak ("Hubbert 's  
peak") in 1 970 (which it did) . Author Case reviews two other books on modeling the depletion 
of fossil fuels.  

Gielis, Johan, A generic geometric transformation that unifies a wide range of natural and ab
stract shapes, American Journal of Botany 90 (3) (2003) 333-3 3 8  

Gielis generalizes superellipses ((xja)n + (yjb)n = 1 )  t o  shapes with arbitrary rotational sym
metry, using trigonometric functions and Fourier series. He cites other articles in which he 
models biological forms via his "Superformula." 



N E W S  A N D L E T T E R S 
Carl B. Allendoerfer Award - 2004 

The Carl B .  Allendoerfer Awards, established in 1 976, are made to authors of expos
itory articles published in Mathematics Magazine. The Awards are named for Carl B .  
Allendoerfer, a distinguished mathematician at the University of Washington and Pres
ident of the Mathematical Association of America, 1 959-60. 

Charles I. Delman and Gregory Galperin, A Tale of Three Circles, MATHEMATICS 
MAGAZINE, February 2003 , pp. l S-32. 

The article by Charles Delman and Gregory Galperin begins with an intriguing ba
sic question about the sum of the angles of curvi l inear triangles formed by the arcs 
of three circles in the plane. In the course of analyzing the problem, the authors carry 
us along a wave that takes us through examples, a theorem that explains it all, and 
an overview of three classical geometries . The authors consider three configurations 
of three intersecting circles in the plane: first, the case where the three circles inter
sect at a common point and no circles are tangent to each other; next, the case where 
the three circles have col l inear centers ; and finally, the case in which the three circles 
intersect as in a generic Venn diagram. Each of the three cases results in a different 
sum of the angles of a curvi linear triangle . A very interesting paper so far, but the fun 
is j ust beginning. The authors open a window with the basic question and lead us to 
a panoramic view of noneuclidean geometries.  With careful summaries of spherical 
and hyperbolic geometries and an introduction to stereographic projection, the authors 
succeed masterfully in sharing the beauty and fascination of noneuclidean geometries 
with those unfami liar with these geometries. The new perspectives and the proof link
ing the three geometries to the three configurations of three intersecting circles is an 
example of elegant mathematics  written in an accessible and clear style. 

Biographical Note: Charles I. Delman Charles Delman, currently Professor of 
Mathematics at Eastern Il l inois University, grew up in Manhattan. New York City's 
rich multi-cultural environment led to lifelong loves for-and dabbling in-art, music , 
and ethnic food, while trips to the nearby Museum of Natural History and summers 
in the Catski l l  mountains cultivated his passions for nature and science. He enjoys 
backpacking with his chi ldren, Anna and Ben, and his partner, Barbara. He is also 
committed to political activism for environmental preservation, peace, and social jus
tice. Charles received his bachelor's in mathematics from Harvard and his Ph.D. from 
Cornell, under the guidance of Alan Hatcher, to whom he will always be grateful for 
demonstrating so well how to get at the essence of an idea. Before coming to EIU, 
he taught at The Ohio State University and Pitzer College. His mathematical interests 
include low-dimensional topology, classical geometry, and dynamical systems. 

Response from Charles Delman I am deeply honored and excited to receive the 
Allendoerfer Prize. Writing "A Tale of Three Circles" was a great pleasure, and I am 
greatly indebted to the people who enhanced both that pleasure and the quality of 
the article : the editor, Frank Farris, who kept us striving for greater clarity and liveli
ness with his many constructive criticisms, questions, and suggestions ;  my delightful 
geometry students, who have over the years so greatly stimulated my interest in the 
subject; my loving partner, Barbara Lawrence, who puts up with more than can be 
mentioned; and, of course, my co-author, Gregory Galperin, with whom I have shared 
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many pleasurable hours of inquiry and collaboration, and who asked in the first place 
the innocent little question that led to this whole thing. 

Biographical Note: Gregory Galperin Gregory Galperin, currently Professor of 
Mathematics at Eastern Illinois University, was born in Tbilisi, the capital of Geor
gia, USSR (Georgia is now a separate country) .  At age 14 ,  he became a student of 
the famous A.N.Kolmogorov physics/mathematics school in Moscow (USSR) , and 
later on a student of the physical and mathematical Department at the University of 
Moscow. He received his PhD from the University of Moscow under the tutelage of 
prominent twentieth century mathematician Andrei N. Kolmogorov, to whom he will 
always be grateful for demonstrating to Dr. Galperin the diversity of mathematics and 
illustrating the elegantly simple yet profound ideas that connect various branches of 
mathematics .  Dr. Galperin' s  Ph.D. thesis concentrated on dynamical systems with lo
cal interaction, which arose partially from biology and partially from automata theory. 
Later on, he worked with Prof. Ya. G. Sinai (Moscow University and Princeton Uni
versity) on the theory of billiards. He has published more than 50 mathematical articles 
on billiards and other dynamical systems, on combinatorial geometry, on differential 
geometry, and on celestial mechanics. Dr. Galperin has been an Alexander von Hum
boldt fellow since 1 994, and has collaborated with Prof. S. Albeverio (the University 
of Bonn, Germany) . As an undergraduate, Dr. Galperin was involved in mathematical 
olympiads,  mainly as a creator of new mathematical problems. He helped conduct the 
Moscow Mathematical Olympiads and the Russian National Math Olympiads from 
1 970-1980, and in 1 986 he published the book Moscow Mathematical Olympiads. He 
wrote and published many popular articles and problems on mathematics in the jour
nals Kvant (in Russian) and Quantum (in English) . He has also played a big role in 
conducting the American National Olympiads, the USAMO, since 1 996, has served as 
Coordinator at the 42nd International Mathematical Olympiad in Washington, D .C . ,  
and was the Deputy Leader of  the USA team at the 44th International Mathematical 
Olympiad in Japan, 2003 . 

Gregory Galperin plays table tennis, likes to draw and listen to music , and enjoys 
reading literature. 

Response from Gregory Galperin Being awarded the Allendoerfer Prize comes 
as an unexpected honor and a very delightful surprise for me. In all of my math
ematical investigations, I have always tried to express the beauty and uncommon
ness of that one key idea which resolves an initially impenetrable challenge. Such 
an idea could consist of just a single unusual expression or word, or an unorthodox 
mathematical construction, or even an unusual mathematical theory. In my common 
article with C. Delman the initial challenge consisted of finding the angle sum of 
the curvilinear triangle formed by three upper semicircles with collinear centers, and 
noticing the hyperbolic geometry behind the picture turned out to be the key idea 
that solved the problem. Inspired by this unusual association, and having long as
pired to reveal the unity of three famous geometries-the Euclidean, spherical, and 
hyperbolic-to a broad audience, we materialized our dream through a narrative of the 
workings of the three geometries in a standard sphere. In the course of our many years 
of work on the article, we both enjoyed seeing our project materialize, as well as having 
the opportunity to share the beauty of the geometrical ideas we used with numerous 
other lovers of mathematics .  We presented our article at various workshops and collo
quia, to students and professors of various universities, and only after much long-term 
polishing did we submit our final text to MATHEMATICS MAGAZINE . I kindly thank 
everyone who gave me good advice while work was being done on the article, and I 
especially thank the MAA for its deep appreciation of my collaborative efforts with 
Dr. Delman, my coauthor and friend. 



777 Mathematica l  Conversat ion Sta rters 

Instructive, amusing, provocative, and insidiously addictive, �����=��:3::�'\ 777 Mathematical Conversation Starters serves up ample 
' fodder for feeding mathematics into classroom discussions or 

" " " "" ' ..., ' " " ' " " "' 

even cocktail party chatter. -lvars Peterson , Science New? 
777 Mathematical Conversation Starters shows that there are 
few degrees of separation between mathematics and topics that 
provoke interesti ng conversations. The topics are access ib le  to 
mathematic ians and non-mathematic ians a l i ke. They i nc l ude 

f}!���:2:�::::;o� thought-provoki ng conversation starters such as:  the va l ue of 
fame; why l anguage matters; the anatomy of thought; how we know what 

we know; and how mathematics produces i ntu ition-defy i ng examples. Many topics are 
accompan i ed by original cartoons and i l l u strations by the author. Pub l i shed for the fi rst 
time here are origi nal  quotes from Joshua Lederberg, Ron Graham, Jay Lena, Mart i n  
Gardner, and many others. 
Catalog Code: MCS/jR • 368 pp., Paperbound, 2002 • 0-88385-540-2 
L i st Price: $3 7.95 • Member Price: $2 9.95 

L--------- Cal l l -800-331 -1 622 to order your copy today! 

HOLY GRAIL OF 
MATH EMATICS FOU N D  
FERMAT'S PROOF TO HIS 
"LAST THEOREM" 
[A Restoration] 

After some 370 years a 17th-Century proof to the greatest enigma in mathematics is 
presented as the restoration of Fermat's letter to a dear friend divulging the origin and rationale 
of both the mathematical AND geometrical proofs as examples of his descent infmitel 
indefmite discussed in his note on the impossibility of the area of a rectangular triangle being 

an integer (new translation) and his August 1 659 letter to Carcavi (the only translation). 
Traces the proof from Euclid and Pythagoras. 
Provides the student with a unique opportunity to see how a "hint" evolves into a "proof' 

and how far a mastery of the logic underlying Euclid's Elements can go in solving the most 
subtle and esoteric mathematical problem that was beyond the ken of even those who have 

mastered symbolic systems of logic. Reaffirms that Euclid is always about more than just 
geometry. 

A MUST FOR EVERY MATH TEACHER AND LIBRARY 
vii + 22 pp. + illustrations $ 1 2.00 + $2.50 S&H + NJ add 6% tax (U.S. $'s only) 

Institutional checks or money orders only 
Akerue Publications LLC • PO Box 9547 • Elizabeth , NJ 07202-0547 



from the Mathematical Association of America 

fo·endly 
EMATICS _. -4 - · 
COMPET IT ION 

.., _ _  

A Friendly 
Mathematics 
Competition : 
Thirty-five Years of 
Teamwork in 
Indiana 
Rick Gillman, Editor 
Series : Problem Books 

A Friendly Mathematics Competition te l l s  the story of the I nd i a n a  Co l l ege 
Mathematics Compet i t ion ( I CMC) by p resent i ng  the p rob l ems, so l ut ions, 
a n d  resu l ts of the fi rst th i rty-five years of the ICMC.  The I CMC was orga n i zed 
i n  react ion to the Putnam Exam-its p rob lems were to be more rep resenta
t ive of the u ndergraduate cu rr icu l u m, and students cou l d  work on them i n  
teams .  Or ig i n a l l y  part ic i pat ion was restr i cted to the sma l l , pr ivate co l l eges 
and u n ivers i t ies of the state, but i t  was l ater opened up to students from a l l  
of the schoo l s  i n  I n d iana .  The compet i t ion was q u i ck ly  n i cknamed the 
1 1 F r iend ly 1 1  Compet i t ion beca use of i ts focus  on  so l v i n g  mathemati ca l 
p rob lems, wh ich b rought fac u l ty a n d  students together, rather  than on  the 
com petit ive natu re of wi n n i ng .  O rga n i zed by year, the p rob l ems and so l u
t ions  i n  th i s  vo l u me p resent an  exce l lent  a rch ive of i nformati on  about what 
has been expected of an u ndergrad uate mathematics maj o r  over the past 
th i rty-five years . With more than 2 4 5  p rob lems and so l ut i o n s, the book i s  
a l so a m u st buy for facu l ty and students i nterested i n  p rob l em-so lv i ng .  

Cata log Code: FMC/J R  • 1 69 pp . ,  Paperbou nd, 2 003 • 0-883 85-808-8 
L i st: $29 .95 • Member: $24 .95 

Order you r  copy today! 
www. maa.org or 1 -800-33 1 -1 62 2 
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